The phorboxazole skeleton consists of six rings includ-
ing two 2,4-disubstituted oxazoles and four tetrahydro-
pyran (THP) units, as well as 15 stereogenic centers
organized into a macrolide lactone (C1-C26) and a side
chain substructure (C27-C46). Not surprisingly, the
novel architecture combined with the impressive bioactiv-
ity has attracted wide attention in the synthetic com-
munity.7,9-12
Scheme 2. Retrosynthetic Analysis of the Bis-pyran Units of the
Phorboxazoles
As such we were attracted to the possibility that our
methodology could be used to construct the THP rings of
the phorboxazoles in an expedient manner. To this end a
retrosynthetic plan was developed for the synthesis of the
C1-C19 bis-pyran fragment of phorboxazole B (Scheme 2).
Scheme 3. Synthesis of the First Tetrahydropyran 15
compounds exhibit extraordinary cytotoxic activity (GI50
< 8 Â 10-10 M) against the entire panel of human tumor
cell lines held at the National Cancer Institute. Together
with spongistatins,8 phorboxazoles are the most potent
naturally occurring cytotoxic agents yet discovered. Fur-
thermore, due to restricted access to the sponge, total
synthesis is the solution to the phorboxazoles’ limited
availability problem.9
(7) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.; Schelhaas, M.
J. Am. Chem. Soc. 2001, 123, 10942–53.
(8) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. L.; Boyd, M. R.;
Schmidt, J. M.; Hooper, J. N. A. J. Org. Chem. 1993, 58, 1302–4.
(9) Forsyth, C. J.; Ahmed, F.; Cink, R. D.; Lee, C. S. J. Am. Chem.
Soc. 1998, 120, 5597–8.
Our synthesis of the C1-C19 fragment of the phorbox-
azoles began with an asymmetric Maitland-Japp reaction
of diketene with aldehyde 11 as the first aldehyde and
oxazole aldehyde 10 as the second aldehyde cyclization
partner (Scheme 3). This generated a mixture of 12 and 13
in 52% and 27% yields respectively, with an enantiomeric
excess of 73%. We have shown that the keto-cis and enol-
trans forms of the THPs generated in the Maitland-Japp
reaction are in equilibrium with each other under Lewis
acidic conditions,2c,d,13and so we were able to separate 12
from 13 and re-equilibrate 13 to a 2:1 mixture of 12:13 by
use of Yb(OTf)3 in CH2Cl2. In this way the yield of 12 was
increased to 70% after one re-equilibration with no loss of
its enantiomeric integrity. Tetrahydropyran-4-one 12 was
decarboxylated under microwave conditions, the ketone
was reduced with NaBH4 to afford the stereochemistry
required for the synthesis of 5, and the free hydroxyl group
protected asa TIPS ether to yield 14. The benzyl ether of 14
was removed with H2 over 10% Pd/C and the primary
alcohol oxidized with Dess-Martin periodinane to gen-
erate aldehyde 15, which we hoped would be a suitable
(10) For total syntheses of phorboxazole A, see: (a) Smith, A. B., III;
Verhoest, P. R.; Minbiole, K. P.; Schelhaas, M. J. Am. Chem. Soc. 2001,
123, 4834–36. (b) Gonzalez, M. A.; Pattenden, G. Angew. Chem., Int. Ed.
2003, 42, 1255–8. (c) Williams, D. R.; Kiryanov, A. A.; Emde, U.; Clark,
M. P.; Berliner, M. A.; Reeves, J. T. Angew. Chem., Int. Ed. 2003, 42,
1258–62. (d) Pattenden, G.; Gonzalez, M. A.; Little, P. B.; Milan, D. S.;
Plowright, A. T.; Tornos, J. A.; Ye, T. Org. Biolmol. Chem. 2003, 1,
4173–208. (e) Smith, A. B., III; Razler, T. M.; Ciavarri, J. P.; Hirose, T.;
Ishikawa, T. Org. Lett. 2005, 7, 4399–402. (f) White, J. D.; Kuntiyong,
P.; Tae, H. L. Org. Lett. 2006, 8, 6039–42. (g) White, J. D.; Kuntiyong,
P.; Tae, H. L. Org. Lett. 2006, 8, 6043–6. (h) Smith, A. B., III; Razler,
T. M.; Ciavarri, J. P.; Hirose, T.; Ishikawa, T.; Meis, R. M. J. Org.
Chem. 2008, 73, 1192–200.
(11) For total syntheses of phorboxazole B, see: (a) Evans, D. A.;
Cee, V. J.; Smith, T. E.; Fitch, D. M.; Cho, P. S. Angew. Chem., Int. Ed.
2000, 39, 2533–6. (b) Evans, D. A.; Fitch, D. M. Angew. Chem., Int. Ed.
2000, 39, 2536–40. (c) Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J.
J. Am. Chem. Soc. 2000, 122, 10033–46. (d) Li, D.-R.; Zhang, D.-H.;
Sun, C.-Y.; Zhang, J.-W.; Yang, L.; Chen, J.; Liu, B.; Su, C.; Zhou, W.-
S.; Lin, G.-Q. Chem.;Eur. J. 2006, 12, 1185–204. (e) Lucas, B. S.;
Gopalsamuthiram, V.; Burke, S. D. Angew. Chem., Int. Ed. 2007, 46,
769–72.
(12) For syntheses of the bis-pyran fragments which have not yet
resulted in the report of a completed synthesis, see: (a) Wolbers, P.;
Hoffmann, H. M. R. Tetrahedron 1999, 55, 1905–14. (b) Greer, P. B.;
Donaldson, W. A. Tetrahedron 2002, 58, 6009–18. (c) Paterson, I.;
Luckhurst, C. A. Tetrahedron Lett. 2003, 44, 3749–54. (d) Yadav,
J. S.; Rajaiah, G. Synlett 2004, 1537–40. (e) Paterson, I.; Steven, A.;
Luckhurst, C. A. Org. Biomol. Chem. 2004, 2, 3026–38. (f) Vitale, J. P.;
Wolckenhauer, S. A.; Do, N. M.; Rychnovsky, S. D. Org. Lett. 2005, 7,
3255–58. (g) Yadav, J. S.; Prakash, S. J.; Gangadhar, Y. Tetrahedron:
Asymmetry 2005, 16, 2722–28. (h) Kartika, R.; Taylor, R. E. Angew.
Chem., Int. Ed. 2007, 46, 6874–77.
(13) (a) Clarke, P. A.; Martin, W. H. C. Tetrahedron Lett. 2004, 45,
9061–3. (b) Clarke, P. A.; Martin, W. H. C. Tetrahedron 2005, 61,
5433–8.
626
Org. Lett., Vol. 13, No. 4, 2011