E. Yabaßs et al. / Inorganica Chimica Acta 365 (2011) 340–348
347
becomes capacitive even at relatively high frequency. The curves
can be modeled as resistor parallel with a capacitor in series with
another resistor [53]. Fig. 10b shows the complex impedance spec-
trum for the film 3 at the temperatures T > 438 K. As seen from
Fig. 10b impedance spectra consist of depressed semicircles with
different radius. With the examination of the Fig. 10b the effect of
the temperature on impedance spectra can be seen clearly. The ra-
dius of the semicircle decreases with increasing temperature. An
ideal semicircle in complex plane only appears in Debye dispersion
relations for single-relaxation time process. Most of the materials
show a pronounced deviation from Debye treatment as in our case.
In this case, the relaxation time is considered as a distribution of
values, rather than a single-relaxation time [56]. The depressed
semicircles with different radius indicate deviation from Debye dis-
persion relation. Therefore, the equivalent circuit is modified to in-
clude a constant phase element (CPE). The series resistance in the
equivalent circuit represents the ohmic losses in the test fixture
and electrode sheet resistance. The parallel resistance is of the coat-
ing material in parallel with that of the substrate. The intercepts of
the semicircular arcs with real axis give us an estimate of the bulk
resistance of the material. It is observed that bulk resistance de-
creases with increasing temperature indicating semiconductor
property. In addition, a straight line was observed in Fig. 10b in
low frequency range. The straight line in the low frequency range
indicates the presence of Warburg component [57]. The complex
impedance spectrum (Nyquist plot) of the film 2 and 4 were similar
to those in Fig. 10.
line in the low frequency range indicates the presence of Warburg
component.
Acknowledgements
The authors gratefully acknowledge the financial support by
Scientific and Technical Research Council of Turkey (TUBITAK, Pro-
ject Nos. 105T240 and 108T140) and the partial support by Turk-
isch Academy of Sciences (TUBA).
References
[1] C.C. Leznoff, A.B.P. Lever, Phthalocyanines Properties and Applications vol. 1,
VCH Publisher, New York, 1989.
[2] C.C. Leznoff, A.B.P. Lever, Phthalocyanines Properties and Applications vol. 2,
VCH Publisher, New York, 1993.
[3] C.C. Leznoff, A.B.P. Lever, Phthalocyanines Properties and Applications vol. 3,
VCH Publishers, New York, 1993.
[4] G. Torre, G. Bottari, U. Hahn, T. Torres, Struct. Bonding 135 (2010) 1.
[5] T. Nyokong, Struct. Bonding 135 (2010) 45.
[6] V. Parra, M. Bouvet, J. Brunet, M.L. Rodríguez-Méndez, J.A. Saja, Thin Solid Films
516 (2008) 9012.
[7] M. Bouvet, Anal. Bioanal. Chem. 384 (2006) 366.
[8] S. Makhseed, A. Bumajdad, B. Ghanem, K. Msayib, N.B. McKeown, Tetrahedron
Lett. 45 (2004) 4865.
[9] F. Yang, S.R. Forrest, Am. Chem. Soc. 2 (2008) 1022.
[10] M.K.R. Fischer, I. Lopez-Duarte, M.M. Wienk, M.V. Martinez-Diaz, R.A.J. Janssen,
P. Bauerle, T. Torres, J. Am. Chem. Soc. 131 (2009) 8669.
_
[11] F. Yılmaz, M. Özer, I. Kani, Ö. Bekarog˘lu, Catal. Lett. 130 (2009) 642.
[12] M.L. Rodriguez-Mendez, R. Aroca, Chem. Mater. 5 (1993) 933.
[13] A.M. Master, M.E. Rodrıguez, M.E. Kenney, N.L. Oleınıck, A.S. Gupta, J. Pharm.
Sci. 99 (2010) 2386.
[14] M.E. Rodriguez, P. Zhang, K. Azizuddin, G.B.D. Santos, S. Chiu, L. Xue1, J.C.
Berlin, X. Peng, H. Wu, M. Lam, A.L. Nieminen, M.E. Kenney, N.L. Oleinick,
Photochem. Photobiol. 85 (2009) 1189.
[15] N. Kobayashi, Coord. Chem. Rev. 227 (2002) 129.
[16] M. Sülü, A. Altındal, Ö. Bekarog˘lu, Synth. Met. 155 (2005) 211.
[17] Ö. Bekarog˘lu, Struct. Bonding 135 (2010) 105.
[18] J.Y. Liu, P.C. Lo, D.K.P. Ng, Struct. Bonding 135 (2010) 169.
[19] Y. Miyazaki, A. Satake, Y. Kobuke, J. Mol. Catal. A: Chem. 283 (2008) 129.
[20] N. Nagata, S. Kugimiya, Y. Kobuke, Chem. Commun. (2000) 1389.
[21] M. Morisue, K. Ogawa, K. Kamada, K. Ohtab, Y. Kobuke, Chem. Commun. 46
(2010) 2121.
4. Conclusion
4,5-Diphenyl-1H-imidazole substituted metal-free phthalocya-
nine, 2, and zinc and cobalt containing metallophthalocyanines, 3
and 4, were synthesized. We studied aggregation behavior of
phthalocyanines in different solvents and concentrations. We also
studied electrochemical and electrical properties of these
phthalocyanines.
[22] A. Satake, M. Fujita, Y. Kurimotoa, Y. Kobuke, Chem. Commun. (2009) 1231.
[23] K. Ogawa, A. Ohashi, Y. Kobuke, K. Kamada, K. Ohta, J. Phys. Chem. B 109 (2005)
22003.
The variation of dc conductivity with temperature shows that
the films of 2, 3 and 4 have different activation energies in different
temperature region. The activation energies EA1 corresponding to
the region I is associated with a short lived charge transfer be-
tween impurity and complex. EA2 which is the activation energy
corresponds to the region III, is associated with the resonant en-
ergy involved in short lived excited state. EA1, corresponds to impu-
rity conduction and EA2 corresponds to an intrinsic generation
process. Temperature dependence of ac conductivity of the films
of 2, 3 and 4 showed that ac conductivity of the films can be char-
acterized in two different temperature ranges. At low temperature
region (T < ꢃ438 K) dominant conduction mechanism can be mod-
eled by single hopping over the measured frequency range. At high
temperature region (T > ꢃ438 K) conduction mechanism can be
modeled depending on frequency region, (i) low frequency region
[24] K. Kameyama, A. Satake, Y. Kobuke, Tetrahedron Lett. 45 (2004) 7617.
[25] K. Kameyama, M. Morisue, A. Satake, Y. Kobuke, Angew. Chem., Int. Ed. 44
(2005) 4763.
[26] P. Mroz, J. Bhaumik, D.K. Dogutan, Z. Aly, Z. Kamal, L. Khalid, H.L. Kee, D.F.
Bocian, D. Holten, J.S. Lindsey, M.R. Hamblin, Cancer Lett. 282 (2009) 63.
[27] W.J. Youngblood, J. Org. Chem. 71 (2006) 3345.
[28] M.E. El-Khouly, L.M. Rogers, M.E. Zandler, G. Suresh, M. Fujitsuka, O. Ito, F.
D’Souza, ChemPhysChem 4 (2003) 474.
[29] K. Padmaja, W.J. Youngblood, L. Wei, D.F. Bocian, J.S. Lindsey, Inorg. Chem. 45
(2006) 5479.
[30] W.L.F. Armarego, C.L.L. Chai, Purification of Laboratory Chemicals vol. 5, third
ed., Butterworth/Heinemann, Tokyo, 2003.
[31] J.G. Young, W. Onyebuagu, J. Org. Chem. 55 (1990) 2155.
[32] H. Engelkamp, R.J.M. Nolte, J. Porphyrins Phthalocyanines 4 (2000) 454.
[33] D.D. Domingez, A.W. Snow, J.S. Shirk, R.G.S. Pong, J. Porhyrins Phthalocyanines
5 (2001) 582.
[34] N. Kobayashi, Y. Agashi, T. Osa, J. Chem. Soc., Chem. Commun. (1994) 1785.
[35] N. Kobayashi, Y. Agashi, T. Osa, Chem. Lett. 23 (1994) 1813.
[36] M. Özer, A. Altındal, A.R. Özkaya, M. Bulut, Ö. Bekarog˘lu, Synth. Met. 155
(2005) 222.
[37] R.J. Li, X.X. Zhang, N. Pan, P.H. Zhu, N. Kobayashi, J.Z. Jiang, J. Porphyrins
Phthalocyanines 9 (2005) 40.
[38] P.H. Zhu, F.L. Lu, N. Pan, D.P. Arnold, S.Y. Zhang, J.Z. Jiang, Eur. J. Inorg. Chem. 23
(2004) 510–517.
[39] F. Guyon, A. Pondaven, J.M. Kerbaol, M. L’Her, Inorg. Chem. 37 (1998) 569.
[40] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and
Applications, second ed., Wiley, New York, 2000.
[41] M. Bouvet, J. Simon, Chem. Phys. Lett. 172 (1990) 299.
[42] Z. Odabasß, A. Altındal, A.R. Özkaya, M. Bulut, B. Salih, Ö. Bekarog˘lu, Polyhedron
26 (2007) 3505.
[43] A.R. Özkaya, A.G. Gürek, A. Gül, Ö. Bekarog˘lu, Polyhedron 16 (1997) 1877.
[44] S. Saydam, E. Yılmaz, F. Bag˘cı, H.G. Yag˘lıog˘lu, A. Elmalı, B. Salih, Ö. Bekarog˘lu,
Eur. J. Inorg. Chem. 14 (2009) 2096.
(x
< ꢃ1 kHz) and (ii) high frequency region (
x
P ꢃ1 kHz). In low
frequency region dominant conduction mechanism can be mod-
eled by SP and in high frequency region by single hopping. Com-
plex impedance spectrum (Nyquist plot) of the films of 2, 3 and
4 at different temperatures showed that at low temperature region
(T < ꢃ438 K) impedance becomes capacitive even at relatively high
frequency. The curves can be modeled a resistor parallel with a
capacitor in series with another capacitor. At high temperature re-
gion (T P ꢃ438 K), depressed semicircles with different radius
indicate deviation from Debye dispersion relation. Therefore, the
equivalent circuit is modified to include a CPE. It is observed that
bulk resistance decreases with increasing temperature indicating
semiconductor property. In this temperature region the straight
[45] A.K. Hassan, R.D. Gould, Int. J. Electronics 74 (1993) 59.
[46] M. Amar, A.M. Saleh, R.D. Gould, Appl. Phys. A: Mater. Sci. Process. 76 (2003)
77.