M. Han et al. / Tetrahedron Letters 52 (2011) 236–239
239
16. Barton, D. H. R.; Hesse, R. H.; O’Sullivan, A. C.; Pechet, M. M. J. Org. Chem. 1991,
56, 6697.
Supplementary data
17. Barton, D. H. R.; Chen, C.; Wall, M. G. Tetrahedron 1991, 47, 6127.
18. (a) Tanaka, K.; Ajiki, K. Tetrahedron Lett. 2004, 45, 5677; (b) Arisawa, M.;
Yamaguchi, M. J. Am. Chem. Soc. 2003, 125, 6624.
19. Görmer, K.; Waldmann, H.; Triola, G. J. Org. Chem. 2010, 75, 1811.
20. (a) Goto, K.; Tokitoh, N.; Okazaki, R. Angew. Chem., Int. Ed. Engl. 1995, 34, 1124;
(b) Kice, J. L.; Weclas-Henderson, L.; Kewan, A. J. Org. Chem. 1989, 54, 4198.
21. Penn, P. E.; Block, E.; Revelle, L. K. J. Am. Chem. Soc. 1978, 100, 3622.
22. Hogg, D. R. Sulphenic Acids and Their Derivatives, 1st ed. In Comprehensive
Organic Chemistry; Barton, D., Ollis, W. D., Jones, D. N., Eds.; Pergamon Press:
Oxford, 1979; Vol. 3, pp 261–310.
The 1H NMR, 13C NMR and HRMS data for all the prepared com-
pounds, experimental procedure for preparation of the unsymmet-
ric disulfide 1 (Scheme 3). Supplementary data associated with this
article can be found, in the online version, at doi:10.1016/
References
23. (a) Kice, J. L.; Rogers, T. E. J. Am. Chem. Soc. 1974, 96, 8015; (b) Kice, J. J.;
Cleveland, J. P. J. Am. Chem. Soc. 1970, 92, 4757; (c) Kice, J. L.; Liu, C. A. J. Org.
Chem. 1979, 44, 1918; (d) Kice, J. L.; Large, G. B. J. Org. Chem. 1968, 33, 1940; (e)
Capozzi, G.; Capperucci, A.; Degl’Innocenti, A.; Duce, R. D.; Menichetti, S.
Tetrahedron Lett. 1989, 30, 2995; (f) Miron, T.; Shin, I.; Feigenblat, G.; Weiner,
L.; Mirelman, D.; Wilchek, M.; Rabinkov, A. Anal. Biochem. 2002, 307, 76.
24. Graber, D. R.; Morge, R. A.; Sih, J. C. J. Org. Chem. 1987, 52, 4620.
25. Zhang, G.; Li, B.; Lee, C. H.; Parkin, K. L. J. Agric. Food Chem. 2010, 58, 1564.
26. (a) Freeman, F.; Angeletakis, C. N. J. Org. Chem. 1985, 50, 793–798; (b) Freeman,
F.; Angeletakis, C. N. J. Org. Chem. 1981, 46, 3991.
1. Lee, S. H. Arch. Pharm. Res. 2009, 32, 299.
2. Block, E. Angew. Chem., Int. Ed. Engl. 1992, 31, 1135.
3. Vogt, A.; Tamura, K.; Watson, S.; Lazo, J. S. J. Pharmacol. Exp. Ther. 2000, 294,
1070.
4. Witt, D. Synthesis 2008, 16, 2491.
5. (a) Heimer, N. E. J. Org. Chem. 1985, 50, 4164; (b) Derbesy, G.; Harpp, D. N.
Tetrahedron Lett. 1994, 35, 5381.
6. Bao, M.; Shimizu, M. Tetrahedron 2003, 59, 9655.
7. Boustany, K. S.; Sullivan, A. B. Tetrahedron Lett. 1970, 11, 3547.
8. (a) Mukaiyama, T.; Takahashi, K. Tetrahedron Lett. 1968, 56, 5907–5908; (b)
Morais, G. R.; Falconer, R. A. Tetrahedron Lett. 2007, 48, 7637.
9. Hunter, R.; Caira, M.; Stellenboom, N. J. Org. Chem. 2006, 71, 8268.
10. Masui, M.; Mizuki, Y.; Sakai, K.; Ueda, C.; Ohmori, H. J. Chem. Soc., Chem.
Commun. 1984, 13, 843.
11. Brois, S. J.; Pilot, J. F.; Barnum, H. W. J. Am. Chem. Soc. 1970, 92, 7629.
12. Oae, S.; Kim, Y. H.; Fukushima, D.; Shinhama, K. J. Chem. Soc., Perkin Trans. 1
1978, 913.
27. Cody, R. B.; Laramee, J. A.; Durst, H. D. Anal. Chem. 2005, 77, 2297.
28. Crystallographic data of compound 11j: C11H13NS3, MW = 255.41, triclinic,
ꢀ
space group P1ð#2Þ; a = 5.9806(9), b = 9.526(2), c = 11.421(2) Å,
a = 83.223°,
b = 79.387°,
(Mo-K
c
= 77.541°, V = 622.4 Å3, Z = 2, Dc = 1.363 g/cm3, F(0 0 0) = 268.00,
l
a
) = 5.62 cmꢀ1, crystal dimensions 0.30 ꢁ 0.20 ꢁ 0.10 mm was used for
measurement on Rigaku RAXIS RAPID imaging plate area detector with
graphite monochromated Mo-K
a radiation. I >2r(I). Final indices: R1 = 0.049,
wR2 = 0.158. The crystal structure of compound 11j was solved by direct
method SIR92 (Altomare, 1994) and expanded using difference Fourier
technique, refined by the program SHELXL-97 (Sheldrick, 1997) and the Full-
matrix least-squares on F2 calculations.
13. Rajca, A.; Wiessler, M. Tetrahedron Lett. 1990, 31, 6075.
14. Ohtani, M.; Narisada, N. J. Org. Chem. 1991, 56, 5475.
15. Brzezinska, E.; Ternay, A. L. J. Org. Chem. 1994, 59, 8239.