256
M. M. Savant et al. / Tetrahedron Letters 52 (2011) 254–257
2. Wu, E. S. C.; Cole, T. E.; Davidson, T. A.; Daiely, M. A.; Doring, K. G.; Fedorchuk,
O
M.; Loch, J. T.; Thomas, T. L.; Blosser, J. C.; Borrelli, A. R.; Kinsolving, C. R.;
Parker, R. B.; Strand, J. C.; Watkins, B. E. J. Med. Chem. 1989, 32, 182.
3. Buckle, D. R.; Barrie, C. C.; Smith, H.; Spicer, B. A. J. Med. Chem. 1975, 18, 391.
4. Griffin, R. J.; Fontana, G.; Golding, B. T.; Guiard, S.; Hardcastle, I. R.; Leahy, J. J.;
Martin, N.; Richardson, C.; Rigoreau, L.; Stockley, M.; Smith, G. C. M. J. Med.
Chem. 2005, 48, 569.
NO2
R
Phenol /iPrOH
O
10
O
Δ
R1
3a-c
O
O
5. Sottofatoori, E.; Anzaldi, M.; Mazzei, M.; Meile, M.; Balbi, A.; Pyshnyi, D. S.;
Zakhrovab, O. D.; Abramovab, T. V. Bioorg. Med. Chem. 2005, 13, 1515.
6. Perrella, F. W.; Chen, S. F.; Behrens, D. L.; Kaltenbach, R. F.; Seitz, S. P. J. Med.
Chem. 1994, 37, 2232.
7. Bauvois, B.; Puiffe, M. L.; Bongui, J. B.; Paillat, S.; Monneret, C.; Dauzonne, D. J.
Med. Chem. 2003, 46, 3900.
8. (a) Dauzonne, D.; Laetitia, M. Tetrahedron Lett. 1995, 36, 1845; (b) Adams, J. P.;
Box, D. S. J. Chem. Soc., Perkin Trans. I 1999, 749; (c) Reid, S. T.; Thompsan, J. K.;
Mushambi, C. F. Tetrahedron Lett. 1983, 24, 2209; (d) Masaaki, T.; Yokitoshi, M.;
Hikari, M.; Kaname, T. Jpn. Chem. Pharm. Bull. 1985, 33, 2129.
R
NO2
R4
Alkoxide/alcohol
30-35 min
O
R1
11a-c
Scheme 5. Reaction of 3a–c with sodium methoxide in methanol.
Table 4
9. (a) Kaname, T.; Masaaki, T.; Yukitoshi, M.; Kuniyoshi, O.; Katsuyuki, I.;
Hikari, M.; Tomoji, A. J. Heterocycl. Chem. 1987, 24, 1003; (b) Masaaki, T.;
Kuniyoshi, O.; Kaname, T. Jpn. Kokai Tokkyo Koho. 1987, 10. JP 62053968 A
19870309.; (c) Venkatesh, C.; Singh, B.; Mahata, P. K.; Ila, H.; Junjappa, H. Org.
Lett. 2005, 7, 11.
10. (a) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A. Green Chem. 2005, 7, 825; (b)
Yan, M. C.; Jang, Y. J.; Kuo, W. Y.; Tu, Z.; Shen, K. H.; Cuo, T. S.; Ueng, C. H.; Yao,
C. F. Heterocycles 2002, 57, 1033.
11. (a) Becket, G. J. P.; Ellis, G. P. Tetrahedron Lett. 1976, 9, 719; (b) Rahman, A. H. A.;
Hammouda, M. A. A.; Desoky, S. I. E. Heteroatom Chem. 2005, 16, 20.
12. (a) Balbi, A.; Ermili, A.; Mazzei, M.; Roma, G.; Braccio, M. D. Farmaco 1984, 39,
863; (b) Ibrahim, S. S. Ind. Eng. Chem. Res. 2001, 40, 37.
Synthesis of chromenones 11a–c
Entry
Chromenones 11a–c
Yielda (%)
1
2
3
11a, R, R1 = H; R4 = Me
11b, R = H; R1 = Cl; R4 = Me
11c, R, R4 = Me; R1 = H
78
72
75
a
Isolated yields after purification.
13. (a) Dieter, R. K. Tetrahedron 1986, 42, 3029; (b) Junjappa, H.; Ila, H.; Asokan, C.
V. Tetrahedron 1990, 46, 5423; (c) Elgemeie, G. H.; Sayed, S. H. Synthesis 2001,
1747; (d) Kolb, M. Synthesis 1990, 171; (e) Tominaga, Y. J. Heterocycl. Chem.
1989, 26, 1167; (f) Tominaga, Y.; Kohra, S.; Honkava, H.; Hosomi, A.
Heterocycles 1989, 29, 1409.
14. (a) Minami, T.; Okauchi, T.; Matsuki, H.; Nakamura, M.; Ichikawa, J.; Ishida, M.
J. Org. Chem. 1996, 61, 8132; (b) Yahira, S.; Shibata, K.; Saito, T.; Okauchi, T.;
Minami, T. J. Org. Chem. 2003, 68, 4947.
Subsequently, we found that the reaction of phenol with
chromenones in identical condition was unable to afford the corre-
sponding chromenone 10 in same fashion (Scheme 5). On the other
hand, using alkoxide as nucleophile reacted well, giving rise to the
novel 2-methoxy-3-nitro-4H-chromenones 11a–c in good yield
with short reaction time (Table 4).22
15. (a) Yuan, H. J.; Wang, M.; Liu, Y. J.; Liu, Q. Adv. Synth. Catal. 2009, 351, 112; (b)
Bi, X.; Dong, D.; Liu, Q.; Tan, J.; Li, B. J. Am. Chem. Soc. 2005, 127, 4578; (c) Liu, J.;
Wang, M.; Li, B.; Liu, Q.; Zhao, Y. J. Org. Chem. 2007, 72, 4401.
In summary, we have developed a novel synthetic strategy for
the synthesis of highly substituted 3-nitro chromenones through
[5+1] heteroannulation of readily accessible 2-hydroxy-x-nitro
16. (a) Kumar, S.; Peruncheralathan, S.; Ila, H.; Junjappa, H. Org. Lett. 2008, 10, 965;
(b) Mishra, N. C.; Panda, K.; Ila, H.; Junjappa, H. J. Org. Chem. 2007, 72, 1246; (c)
Peruncheralathan, S.; Khan, T. A.; Ila, H.; Junjappa, H. J. Org. Chem. 2005, 70,
10030; (d) Roy, A.; Nandy, S.; Ila, H.; Junjappa, H. Org. Lett. 2001, 3, 229; (e)
Syam Kumar, U. K.; Ila, H.; Junjappa, H. Org. Lett. 2001, 3, 4193.
17. (a) Rao, H. S. P.; Geetha, K. Tetrahedron Lett. 2009, 50, 3836; (b) Rao, H. S. P.;
Vasantham, K. J. Org. Chem. 2009, 74, 6847; (c) Rao, H. S. P.; Sivkumar, S. J. Org.
Chem. 2006, 71, 8715; (d) Rao, H. S. P.; Sivakumar, S. J. Org. Chem. 2005, 70,
4524.
18. (a) Savant, M. M.; Pansuriya, A. M.; Bhuva, C. V.; Kapuriya, N.; Patel, A. S.;
Audichya, V. B.; Pipaliya, P. V.; Naliapara, Y. T. J. Comb. Chem. 2010, 12, 176; (b)
Butler, A. R.; Brown, E. H. Arkivoc 2002, 3, 166; (c) Savant, M. M.; Pansuriya, A.
M.; Bhuva, C. V.; Kapuriya, N.; Naliapara, Y. T. Catal. Lett. 2009, 132, 281.
19. Kim, Y. W.; Mobley, J. A.; Brueggemeier, R. W. Bioorg. Med. Chem. Lett. 2003, 13,
1475.
acetophenone with carbon disulfide followed by nucleophilic addi-
tion through elimination of methylthio with various amines, thiols,
and alkoxide. The direct C–N, C–S, and C–O bond formation reac-
tion at C2 was achieved by the presence of nitro functionality at
C3 position of chromenone. The newly developed methodology al-
lows direct access to 2-substituted-3-nitro chromenone in excel-
lent yield and high chemical purity. The presence of nitro
functionality further makes them useful substrates for various
transformations for biological interest.
Acknowledgments
20. Typical procedure for the synthesis of 3a–c. To a well-stirred suspension of
potassium carbonate (7.62 g, 55 mmol) in dry THF (15 mL) at 0 °C was added
CS2 (1.65 mL, 27.5 mmol) diluted with 10 mL THF along with substituted 2-
The authors are thankful to FIST-DST, SAP-UGC and DST New
Delhi, for their financial support. Special thanks are due to NFDD,
SU, Rajkot. M.M.S. thanks to Professor H. Junjappa for helpful
discussion. We appreciate SAIF, CIL, Chandigarh, and NRC, IISc,
Bangalore for providing spectroscopic analysis.
hydroxy-x-nitroacetophenone (27.5 mmol) over a period of 30 min. After
completion of the addition, the reaction mixture was stirred at 0 °C for 30 min
and rt for 30 min. Appearance of orange yellow solid in the reaction medium
indicated the formation of disodium salt. To this reaction, a solution of methyl
iodide (3.41 mL, 55 mmol) in THF (7 mL) was added dropwise over a period of
15 min at 0 °C. The mixture was allowed to warm to room temperature and
stirred for 5–6 h, and then poured onto crushed ice (100 g) under stirring. The
separated solid was collected by filtration, washed with water (2 Â 100 mL)
then hexane, dried in vacuo and crystallized from chloroform to furnish the
analytically pure products in excellent yield which were used for next step
without further purification. 2-(Methylthio)-3-nitro-4H-chromen-4-one (3a).
Yellow solid; Rf 0.41 (6:4 hexane–EtOAc); purity 98.91%; mp 185–187 °C; MS
m/z: 237(M+); 1H NMR (400 MHz): d 3.13(s, 3H), 7.56–7.61(t, 1H, Ar-H), 7.79(d,
J = 8.8 Hz, 1H, Ar-H), 7.85–7.91(t, 1H, Ar-H), 8.11(d, J = 8.6 Hz, 1H, Ar-H); 13C
NMR (100 MHz): 18.00, 118.54, 124.08, 124.65, 125.24, 125.81, 128.31, 134.88,
151.38, 158.99, 167.73. Anal. Calcd for C10H7NO4S: C, 50.63; H, 2.97; N, 5.90.
Found: C, 50.57; H, 2.90; N, 5.84.
Supplementary data
Supplementary data contains characterization data along with
spectral copies and ORTEP diagram of compound 3a. This material
data for the structure 3a in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publi-
cation nos. CCDC 760004. Copies of the data can be obtained, free
of charge, on application to CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK, (fax: +44 (0)1223-336033 or e-mail: deposit@ccdc.
cam.ac.Uk). Supplementary data associated with this article can
21. General procedure for the reaction of chromenones (3a–c) with various amines
(4a–e) or arylthiols (8a–c). A mixture of various chromenones (3a–c, 1 mmol)
and appropriate amines (4a–c, 1.1 mmol) or arylthiols (8a–c, 1.1 mmol) in i-
propyl alcohol (5 mL) was heated to reflux for 30–60 min. After completion of
the reaction, the separated solid was filtered, washed with water, dried under
vacuo and recrystallized from MeOH to give the desired product 6a–o or 9a–i.
3-nitro-2-(phenylamino)-4H-chromen-4-one (6a) cream colour solid; Rf 0.51
(6:4 hexane–EtOAc); purity 97.89%; mp 220–222 °C; MS m/z: 282(M+); 1H
NMR (400 MHz): d 7.24(d, J = 0.76 Hz, 1H, Ar-H), 7.40–7.55(m, 6H, Ar-H), 7.61–
7.66 (t, 1H, Ar-H), 8.29(dd, J = 7.92 Hz, 1H, Ar-H), 11.65(s, 1H, NH); 13C NMR
(100 MHz): 88.17, 116.84, 118.21, 122.19, 125.00, 125.76, 125.87, 126.93,
References and notes
1. Vasselin, A. D.; Westwell, A. D.; Matthews, C. S.; Bradshaw, T. D.; Stevens, M. F.
G. J. Med. Chem. 2006, 49, 3973.