Article
Inorganic Chemistry, Vol. 50, No. 4, 2011 1333
program package supported by GaussView 4.1. The DFT5 and
TD-DFT6 calculations have been performed at the level of
Becke three parameter hybrid functional with the nonlocal
correlation functional of Lee-Yang-Parr (B3LYP).7 The gas
phase geometries of cis and trans isomers of Rh(LNHPhH2)-
(PMe3)2Cl2 (3), [Rh(LNHPhH2)(PMe3)2Cl2]þ (3þ), and Rh(LNHPh
-
H2)(PMe3)Cl (4) have been optimized on theoretical coordinates
using Pualy’s Direct Inversion8 in the Iterative Subspace (DIIS),
using the “tight” convergent SCF procedure9 ignoring symme-
try. In all calculations, a LANL2DZ basis set, along with the
corresponding effective core potential (ECP), was used for
rhodium metal.10-12 Valence double-ζ basis set, 6-31G13 for H
was used. For C, N, P, and Cl non-hydrogen atoms valence
double-ζ plus diffuse and polarization functions, 6-31þþG**14
as basis set were employed for the calculations. The percentage
contribution of ligand and metal to the frontier orbitals of 3, 3þ,
and 4 have been calculated using the GaussSum program pack-
age.15 The 60 lowest singlet excitation energies on the optimized
geometries of 3, 3þ, and 4 in dichloromethane using the CPCM
model16 have been elucidated with the TD-DFT method.
Figure 1. Molecular structure of the [t-1]þ in crystals of [t-1]þI3 (I3
ion is omitted for clarity).
-
-
Results and Discussion
Syntheses. The dark red compound, trans-Rh(LNHPhH2)-
(PPh3)2Cl2 (1), stable in solid state, has been synthesized
in high yield (90% with respect to Rh) by reacting RhCl3
with PPh3 and the osazone ligand (LNHPhH2) in boiling
ethanol under anaerobic condition. 1 is one electron
paramagnetic (μeff = 1.70 μB), and the spin is mostly
localized on the osazone ligand forming the 1(t-RhL•)
electromer. 1 is not stable and even under argon slowly
produces trans-[RhIII(LNHPhH2)(PPh3)2Cl2]þ, [t-1]þ, and a
rhodium(I) osazone complex, RhI(LNHPhH2)(PPh3)Cl (2).
Formation of products, [t-1]þ and 2 from 1 indicates in
solution the contribution of 1(t-Rh•L) electromer, which is
a rhodium(II) osazone complex that undergoes facile
disproportionation reaction17 to a rhodium(III) osazone
complex, [t-1]þ and 2, a new square planar rhodium(I)
osazone complex as eq 1. Upon chromatographic sepa-
ration, 2 has been isolated as a pure product. As the
electromers, 1(t-RhL•) and 1(t-Rh•L) are very reactive in
solution, and they undergo oxidation affording a [t-1]þ
cation in the presence of any kind of oxidizing agent as in
eq 2. Oxidation of 1 by I2 in dichloromethane under argon
affords the crystals of [t-1]þI3- in low yield (∼12% with
respect to 1).
(4) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci,
B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada,
M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.;
Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Ragha-
vachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.;
Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;
Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision
E.01; Gaussian, Inc.: Wallingford CT, 2004.
(5) (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864. (b) Kohn, W.;
Sham, L. J. Phys. Rev. 1965, 140, A1133. (c) Parr, R. G.; Yang, W. Density
Functional Theory of Atoms and Molecules; Oxford University Press: Oxford,
U.K., 1989. (d) The Challenge of d and f Electrons; Salahub, D. R., Zerner,
M. C., Eds.; ACS Symposium Series 394; American Chemical Society:
Washington, D.C., 1989.
(6) (a) Bauernschmitt, R.; Haser, M.; Treutler, O.; Ahlrichs, R. Chem.
Phys. Lett. 1996, 256, 454. (b) Stratmann, R. E.; Scuseria, G. E.; Frisch, M.
J. Chem. Phys. 1998, 109, 8218. (c) Casida, M. E.; Jamoroski, C.; Casida, K. C.;
Salahub, D. R. J. Chem. Phys. 1998, 108, 4439.
2 1ðt-Rh•LÞ f ½t-1ꢀþ þ 2 þ PPh3 þ Cl-
1ðt-RhL•Þ f ½t-1ꢀþ þ e
ð1Þ
ð2Þ
(7) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.;
Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Miehlich, B.; Savin, A.; Stoll, H.;
Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
All of these compounds (1, [t-1]þI3-, and 2) have been
characterized by elemental analyses and various spectra
including the single crystal X-ray structure determination
of [t-1]þI3-. In IR spectra, the NH stretching frequency
appears at 3289, 3289, and 3277 cm-1 for 1, [t-1]þI3-, and 2,
respectively.
(8) Pulay, P. J. Comput. Chem. 1982, 3, 556.
(9) Schlegel, H. B.; McDouall, J. J. Computational Advances in Organic
Chemistry, Ogretir, C.; Csizmadia, I. G., Eds.; Kluwer Academic: The Nether-
lands, 1991, pp 167-185.
(10) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
(11) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
Molecular Geometry in Crystals. [t-1]þI3-. Single crys-
(12) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
-
tal X-ray structure determination of [t-1]þI3 has con-
(13) (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phy. 1972, 56,
2257. (b) Hariharan, P. C.; Pople, J. A. Theo. Chim. Acta 1973, 28, 213.
(c) Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209. (d) Rassolov, V. A.;
Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comput. Chem. 2001,
22, 976. (e) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; DeFrees,
D. J.; Pople, J. A.; Gordon, M. S. J. Chem. Phys. 1982, 77, 3654.
(14) (a) Hariharan, P. C.; Pople, J. A. Theo. Chim. Acta 1973, 28, 213.
(b) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. J. Comput.
Chem. 1983, 4, 294.
firmed the molecular geometry of [1]þ in crystals. It
crystallizes in space group P2/c. The molecular structure
(17) (a) Paul, P.; Tyagi, B; Bilakhiya, A. K.; Bhadhade, M. M.; Suresh, E.
Dalton Trans. 1999, 2009–2014. (b) Brown, G. M.; Chan, S. F.; Creutz, C.;
Schwartz, H. A.; Sutin, N. J. Am. Chem. Soc. 1979, 101, 7638. (c) Mulazzani,
Q. G.; Emmi, S.; Hoffman, M. Z.; Venturi, M. J. Am. Chem. Soc. 1981, 103,
3362. (d) Schwarz, H. A.; Creutz, C. Inorg. Chem. 1983, 22, 707. (e) Kew, G.;
DeArmond, K.; Hanck, K. J. Phys. Chem. 1974, 78, 727. (f) Kew, G.; Hanck, K.;
DeArmond, K. J. Phys. Chem. 1975, 79, 1828.
(15) O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput. Chem.
2008, 29, 839.
(16) (a) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.
2003, 24, 669. (b) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.