K. Ushiroda et al. / Bioorg. Med. Chem. Lett. 21 (2011) 220–224
223
*
**
Figure 3. Evaluation of 10sNa in db/db mice for 14 days. P <0.05, P <0.01 compared to vehicle control (Dunnett’s test). #P <0.05, ##P <0.01 compared to vehicle control
(Student’s test). Values are the means of 6 animals/group.
the measured half-life values of 10sNa were all acceptable for
in vivo study (Table 2).
examining in detail the pharmacological mechanism of PPARc par-
tial agonists or modulators using 10sNa and its derivatives.
Compound 10sNa was evaluated in db/db mouse model show-
ing both hyperglycemia and obesity.14 Two-week-old male db/db
mice were randomly assigned to four groups that received control
rodent chow, compound 10sNa (15 or 141 mg/kg/day) in chow, or
pioglitazone (2) (41 mg/kg/day) in chow. The results of this in vivo
study are described in Figure 3. Although compound 10sNa at
15 mg/kg/day demonstrated a weaker blood glucose-lowering ef-
fect than pioglitazone (2) at 41 mg/kg/day, this effect was statisti-
cally-significant compared to that of the vehicle control.
Compound 10sNa at 141 mg/kg/day demonstrated favorable blood
glucose-lowering effect similar to that observed with pioglitazone
(2) at 41 mg/kg/day. Surprisingly, treatment with pioglitazone (2)
caused a significant increase in body weight compared to the vehi-
cle control, whereas treatment with 10sNa did not cause body
weight gain. No difference in mice food intake was observed be-
tween test drugs treated groups and the vehicle control group.
Acknowledgments
We gratefully thank Takahiro Nagasaki for his chemistry techni-
cal assistance. We also appreciate the help of Masako Sumitomo
and Satomi Nakai in obtaining data of PPARa/c activity. Kei-ichi
Fujimoto is acknowledged for obtaining all pharmacokinetic data.
References and notes
1. (a) World Health Organization, Fact Sheet No. 138, April 2002. (http://
2002, 45, S5; (c) King, H.; Aubert, R. E.; Herman, W. H. Diabetes Care 1998, 21,
1414.
2. Wagman, A. S.; Nuss, J. M. Curr. Pharm. Des. 2001, 7, 417.
3. Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher, M. H.; He, H.; Hicky, G. J.;
Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.;
Petrov, A.; Scapin, G.; Patel, S. B.; Roy, R. S.; Wu, J. K.; Wyvratt, M. J.; Zhang, B.
B.; Zhu, L.; Thornberry, N. A.; Weber, A. E. J. Med. Chem. 2005, 48, 141.
4. Joy, S. V.; Rodger, P. T.; Scates, A. C. Ann. Pharmacother. 2005, 39, 110.
6. (a) Peraza, M. A.; Burdick, A. D.; Marin, H. E.; Gonzalez, F. J.; Peters, J. M. Toxicol.
Sci. 2006, 90, 269; (b) Plosker, G. L.; Faulds, D. Drugs 1999, 57, 409; (c) Balfour, J.
A.; Plosker, G. L. Drugs 1999, 57, 921.
7. Nesto, R. W.; Bell, D.; Bonow, R. O.; Fonseca, V.; Grundy, S. M.; Horton, E. S.;
Winter, M. L.; Porte, D.; Semenkovich, C. F.; Smith, S.; Young, L. H.; Kahn, R.
Diabetes Care 2004, 27, 256.
8. For reviews on PPARs: (a) Shearer, B. G.; Billin, A. N. Biochim. Biophys. Acta 2007,
1771, 1082; (b) Staels, B.; Fruchart, J.-C. Diabetes 2005, 54, 2460; (c) Gross, B.;
Staels, B. Best Pract. Res. Clin. En. 2007, 21, 687; (d) Willson, T. M.; Brown, P. J.;
Sternbach, D. D.; Henke, B. R. J. Med. Chem. 2000, 43, 527.
9. (a) Sugaru, E.; Sakai, M.; Horigome, K.; Tokunaga, T.; Kitoh, M.; Hume, W. E.;
Nagata, R.; Nakagawa, T.; Taiji, M. Am. J. Physiol. Renal. Physiol. 2005, 289, 998;
(b) Sugaru, E.; Nakagawa, T.; Ono-Kishino, M.; Nagamine, J.; Tokunaga, T.;
Kitoh, M.; Hume, W. E.; Nagata, R.; Taiji, M. Am. J. Physiol. Renal. Physiol. 2006,
290, 813; (c) Sugaru, E.; Nakagawa, T.; Ono-Kishino, M.; Nagamine, J.;
Tokunaga, T.; Kitoh, M.; Hume, W. E.; Nagata, R.; Taiji, M. Am. J. Nephrol.
2006, 26, 50; (d) Sugaru, E.; Nakagawa, T.; Ono-Kishino, M.; Nagamine, J.;
Tokunaga, T.; Kitoh, M.; Hume, W. E.; Nagata, R.; Taiji, M. Nephron Exp. Nephrol.
2007, 105, 45; (e) Tsujimura, T.; Nagamine, J.; Sugaru, E.; Nakagawa, T.; Ono-
Kishino, M.; Tokunaga, T.; Kitoh, M.; Nagata, R.; Taiji, M. Nephron Exp. Nephrol.
2008, 110, 99; (f) Tsujimura, T.; Ono-Kishino, M.; Nagamine, J.; Sugaru, E.;
Tokunaga, T.; Kitoh, M.; Nagata, R.; Nakagawa, T.; Taiji, M. Biomed. Res. 2009,
30, 177; (g) Tsujimura, T.; Nagamine, J.; Sugaru, E.; Ono-Kishino, M.; Tokunaga,
T.; Kitoh, M.; Nagata, R.; Nakagawa, T.; Taiji, M. Biol. Pharma. Bull. 2009, 32,
1991.
While body weight gain is a well-known side effect of PPAR
agonist,15 body weight reduction in rodents has been reported
with PPAR
agonists, such as fenofibrate 316 and other drugs.17 It
has also been reported that PPAR partial agonists or modulators
cause little change in body weight.18 Compound 10sNa showed
4-fold weaker activity for mouse PPAR than for human PPAR
and displayed partial agonistic activity for PPAR . We therefore as-
c full
a
c
a
c,
c
sume that such beneficial profile of the blood glucose-lowering ef-
fect without body weight gain observed with 10sNa is attributed to
not only its PPARa agonistic activity but also its PPARc partial ago-
nistic activity.
In summary, starting with a subtle glucose-lowering effect of a
TGF-b inhibitor, a new class of benzoylpyrrole-based carboxylic
acids was found to show PPAR
pounds were then examined, and meta-phenoxy acetic acid ana-
logs were identified as potent PPAR agonists. The selected
a/c activity. The SARs of these com-
a/c
compound 10sNa showed an acceptable pharmacokinetic profile
for in vivo study and a favorable blood glucose-lowering effect
without body weight gain. Compound 10sNa differs from other
PPARa/c agonists in that it is a PPARc partial agonist. It is therefore
believed that the analogs described in this study are attractive can-
didates for the treatment of type 2 diabetes. We are currently