192
M. Yang et al. / Inorganic Chemistry Communications 14 (2011) 189–193
[44] T.B. Hadda, A.T. Kotchevar, M. Daoudi, B. Bennani, N. Ben Larbi, A. Kerbal, Lett.
Drug Des. Discovery 2 (2005) 584.
[45] I. Bouabdallah, L.A. M'barek, A. Zyad, A. Ramdani, I. Zidane, A. Melhaoui, Nat. Prod.
Res. 20 (2006) 1024.
[46] J. Hitzbleck, A.Y. O'Brien, G.B. Deacon, K. Ruhlandt-Senge, Inorg. Chem. 45(2006) 10329.
[47] P.M. van Berkel, W.L. Driessen, R. Hämäläinen, J. Reedijk, U. Turpeinen, Inorg.
Chem. 33 (1994) 5920.
through the National Research Foundation of Korea (NRF), funded by
the Ministry of the Education, Science, and Technology (Grant No.
2009-0075742).
Appendix A. Supplementary material
[48] C. Dowling, V.J. Murphy, G. Parkin, Inorg. Chem. 35 (1996) 2415.
[49] A.R. Katritzky, S. Rachwal, J. Wu, Can. J. Chem. 68 (1990) 446.
[50] Representative synthesis of N,N-Bis{(1-H-Pyrazole-1-yl)methyl}-2,4,6-trimethy-
laniline, [bpmaL2]: 2,4,6-trimethylaniline (3.12 mL, 22.2 mmol) was added slowly
to (1-H-Pyrazole-1-yl)methanol (4.35 g, 44.3 mmol) solution in 1,2-dichloroeth-
ane (150 mL). The reaction solution was dried over MgSO4 after stirring the
reaction mixture at 80 °C for 36 hours. The filtrate solvent was removed under
reduced pressure to give pale yellow residue, which was recrystalized in hexane as
a yellow solid (5.90 g, 90.1%). m.p=71-72 °C. 1 H NMR (CDCl3, 400 MHz): δ 7.56
([-(N2C3H3)2-], d, 2 H, J=0.15 Hz), 7.32 ([-(N2C3H3)2-], d, 2 H, J=0.15 Hz), 6.82
([C6H2(CH3)3 N-], s, 2 H), 6.25 ([-(N2C3H3)2-], t, 2 H, J=0.38 Hz), 5.40 ([-N
The supplementary crystallographic data for 2a can be obtained
free of charge from The Cambridge Crystallographic Data Centre via
ed with this article can be found, in the online version, at doi:10.1016/
j.inoche.2010.10.019.
References
(CH2)2-], s, 4 H), 2.23 ([C6H2(CH3)3 N-], s, 3 H), 1.75 ([C6H2(CH3)3 N-], s, 6 H). 13
C
NMR (CDCl3, 400 MHz) : δ 140.86 ([C6H2(CH3)3 N-], s, 1 C), 139.86 ([-(N2C3H3)2-],
d, 2 C, J=185 Hz), 136.82 ([C6H2(CH3)3 N-], s, 2 C), 136.27 ([C6H2(CH3)3 N-], s,
1 C), 129.54 ([C6H2(CH3)3 N-], d, 2 C, J=155 Hz), 129.21 ([-(N2C3H3)2-], d, 2 C,
J=186 Hz), 105.95 ([-(N2C3H3)2-], d, 2 C, J=176 Hz), 68.25 ([-N(CH2)2], t, 2 C,
J=150 Hz), 20.78 ([C6H2(CH3)3 N-], q, 1 C, J=126 Hz), 17.66 ([C6H2(CH3)3 N-], q,
2 C, J=127 Hz). UV-vis (Toluene)/nm 267 (ε/cm-1 M-1 4704), 285 (ε/cm-1 M-1
12327). Analysis calculated for C17H21N5: C, 69.12; H, 7.17; N, 23.71%. Found: C,
68.83; H, 7.44; N, 23.89%. IR (solid neat/cm-1): 1603 (w), 1509 (m), 1485 (m), 1444
(w), 1420 (w), 1395 (m), 1360 (w), 1349 (w), 1323 (w), 1286 (m), 1260 (m), 1202
(m), 1187 (m), 1152 (s), 1099 (w), 1085 (s), 1042 (s), 966 (m), 954 (m), 943 (w),
917 (w), 891 (w), 867 (w), 851 (w), 790 (m), 753 (s), 732 (s), 701 (m), 652 (m),
616 (s), 589 (s). Representative synthesis of 2a: A solution of [bpmaL2] (2.00 g,
6.77 mmol) in dried ethanol (50 mL) was added to a solution of CoCl2·6H2O
(1.61 g, 6.77 mmol) in dried ethanol (50 mL) at room temperature. A dark blue
solid was precipitated after stirring at room temperature for 24 h. The solid was
filtered and washed with fresh cold ethanol (30 mL × 3), followed by washing with
hexane (30 mL × 2), to give a sky blue-colored crystalline solid (2.65 g, 92.0%). m.
p=207-208 °C. UV-vis (Toluene)/nm 262 (ε/cm-1 M-1 12573), 286 (ε/cm-1 M-1
34372), 609 (ε/cm-1 M-1 1111). Analysis calculated for C17H21Cl2CoN5: C, 48.02; H,
4.98; N, 16.47%. Found: C, 47.45; H, 4.95; N, 16.32%. IR (solid neat/cm-1): 1453 (w),
1405 (m), 1321 (w), 1302 (m), 1250 (m), 1206 (w), 1190 (m),1169 (s), 1158 (m),
1100 (w), 1083 (w), 1064 (s), 991 (w), 975 (m), 941 (w), 921 (w), 907 (w), 878 (w),
847 (m), 815 (w), 765 (s), 735 (s), 687 (w), 675 (w), 644 (m), 608 (s), 588 (s), 555 (s).
[51] Crystallographic data for 2a: C17H21Cl2N5Co, M=235.64, T=293(2) K,
Wavelength 0.71073 Å, Crystal size 0.40 × 0.35 × 0.20 mm, Triclinic, Pī,
a=12.4569(8)Å, b=13.2915(8) Å, c=15.1502(14) Å, U=2295.6(3) Å3, Z=8,
Dc=1.364 Mg/m3, μ (λ=0.71073 Å)=0.996 mm-1, F(000)=976, Reflections
collected 9229, Independent reflections 8526 [R(int)=0.0111], Reflections
observed (N2σ) 4959, Data Completeness 0.993, Refinement method, Full-matrix
least-squares on F@2, Data / restraints / parameters, 8536 / 0 / 258, Goodness-of-
fit on F@2, 1.049, Final R indices [IN2σ (I)], R1=0.0491, wR2=0.1572, R indices
(all data), R1=0.1040, wR2=0.1681. Theta range for data collection 1.64° to
25.55° Index ranges -15≤h≤14, -16≤k≤0, -18≤l≤18, Largest diff. peak and
hole 0.595 and -0.358 e. Å-3. An X-ray-quality single crystal was mounted in a
thin-walled glass capillary on an Enraf-Noius CAD-4 diffractometer with Mo-Kα
radiation (λ = 0.71073 Å). Unit cell parameters were determined by least-
squares analysis of 25 reflections (10°bθ b 13°). Intensity data were collected
with a θ range of 1.83° to 25.46° in ω/2θ scan mode. Three standard reflections
were monitored every 1 h during data collection. The data were corrected for
Lorentz polarization effects and decay. Empirical absorption corrections with
χ-scans were applied to the data. The structure was solved using the Patterson
method and refined by the full-matrix least-squares techniques on F using
SHELX-97 and SHELX-97 program packages. The positions of all non-hydrogen
atoms were refined geometrically using a riding model correction with fixed
[1] C. Amort, M. Malaun, A. Krajete, H. Kopacka, K. Wurst, M. Christ, D. Lilge, M.O.
Kristen, B. Bildstein, Appl. Organomet. Chem. 16 (2002) 506.
[2] C. Vedder, F. Schaper, H.-H. Brintzinger, M. Kettunen, S. Babik, G. Fink, Eur. J. Inorg.
Chem. (2005) 1071.
[3] L.K. Johnson, C.M. Killian, M. Brookhart, J. Am. Chem. Soc. 117 (1995) 6414.
[4] F. Speiser, P. Braunstein, L. Saussine, Acc. Chem. Res. 38 (2005) 784.
[5] G.J.P. Britovsek, S. Mastroianni, G.A. Solan, S.P.D. Baugh, C. Redshaw, V.C. Gibson,
A.J.P. White, D.J. Williams, M.R.J. Elsegood, Chem. Eur. J. 6 (2000) 2221.
[6] S.A. Svejda, M. Brookhart, Organometallics 18 (1999) 65.
[7] D. Takeuchi, R. Matsuura, K. Osakada, Macromol. Rapid Commun. 29 (2008) 1932.
[8] Y. Chen, R. Chen, C. Qian, X. Dong, J. Sun, Organometallics 22 (2003) 4312.
[9] L. Xiao, R. Gao, M. Zhang, Y. Li, X. Cao, W.-H. Sun, Organometallics 28 (2009) 2225.
[10] K. Yliheikkilä, K. Lappalainen, P.M. Castro, K. Ibrahim, A. Abu-Surrah, M. Leskelä, T.
Repo, Eur. Polym. J. 42 (2006) 92.
[11] B.L. Small, M. Brookhart, Macromolecules 32 (1999) 2120.
[12] D. Zabel, A. Schubert, G. Wolmershäuser, R.L. Jones Jr., W.R. Thiel, Eur. J. Inorg.
Chem. (2008) 3648.
[13] K.P. Tellmann, V.C. Gibson, A.J.P. White, D.J. Williams, Organometallics 24 (2005)
280.
[14] B.L. Small, M. Brookhart, J. Am. Chem. Soc. 120 (1998) 7143.
[15] B.L. Small, M. Brookhart, A.M.A. Bennett, J. Am. Chem. Soc. 120 (1998) 4049.
[16] G.J.P. Britovsek, V.C. Gibson, B.S. Kimberley, P.J. Maddox, S.J. McTavish, G.A. Solan,
A.J.P. White, D.J. Williams, Chem. Commun. (1998) 849.
[17] R. Cowdell, C.J. Davies, S.J. Hilton, J.-D. Maréchal, G.A. Solan, O. Thomas, J. Fawcett,
Dalton Trans. (2004) 3231.
[18] G.J.P. Britovsek, V.C. Gibson, O.D. Hoarau, S.K. Spitzmesser, A.J.P. White, D.J.
Williams, Inorg. Chem. 42 (2003) 3454.
[19] G.J.P. Britovsek, V.C. Gibson, S. Mastroianni, D.C.H. Oakes, C. Redshaw, G.A. Solan,
A.J.P. White, D.J. Williams, Eur. J. Inorg. Chem. (2001) 431.
[20] L.G. Furlan, M.P. Gil, O.L. Casagrande Jr., Macromol. Rapid Commun. 21 (2000) 1054.
[21] K. Li, J. Darkwa, I.A. Guzei, S.F. Mapolie, J. Organomet. Chem. 660 (2002) 108.
[22] S. Tsuji, D.C. Swenson, R.F. Jordan, Organometallics 18 (1999) 4758.
[23] T.G. Schenck, J.M. Downes, C.R.C. Milne, P.B. Mackenzie, H. Boucher, J. Whelan, B.
Bosnich, Inorg. Chem. 24 (1985) 2334.
[24] L.L. de Oliveira, R.R. Campedelli, M.C.A. Kuhn, J.-F. Carpentier, O.L. Casagrande Jr.,
J. Mol. Catal. A Chem. 288 (2008) 58.
[25] Z. Zhang, D. Cui, A.A. Trifonov, Eur. J. Inorg. Chem. (2010) 2861.
[26] C. Lansalot-Matras, F. Bonnette, E. Mignard, O. Lavastre, J. Organomet. Chem. 693
(2008) 393.
[27] B. Lian, C.M. Thomas, O.L. Casagrande Jr., C.W. Lehmann, T. Roisnel, J.-F. Carpentier,
Inorg. Chem. 46 (2007) 328.
[28] S. Scheuer, J. Fischer, J. Kress, Organometallics 14 (1995) 2627.
[29] D.P. Long, P.A. Bianconi, J. Am. Chem. Soc. 118 (1996) 12453.
[30] H. Nakazawa, S. Ikai, K. Imaoka, Y. Kai, T. Yano, J. Mol. Catal. A:Chem. 132 (1998) 33.
[31] S. Murtuza, O.L. Casagrande Jr., R.F. Jordan, Organometallics 21 (2002) 1882.
[32] S. Trofimenko, Chem. Rev. 72 (1972) 497.
isotropic thermal factors. The final cycle of refinement converged with R1
0.1040 and wR2 = 0.1681.
=
[52] H.L. Blonk, W.L. Driessen, J. Reedijk, Chem. Soc., Dalton Trans (1985) 1699.
[33] S. Trofimenko, Chem. Rev. 93 (1993) 943.
[53] S.-C. Sheu, M.-J. Tien, M.-C. Cheng, T.-I. Ho, S.-M. Peng, Y.-C. Lin, J. Chem. Soc.,
Dalton Trans (1995) 3503.
[54] Q.-Y. Li, X.-Y. Tang, W.-H. Zhang, J. Wang, Z.-G. Ren, H.-X. Li, Y. Zhang, J.-P. Lang,
J. Mol. Struct. 879 (2008) 119.
[55] G.J.P. Britovsek, M. Bruce, V.C. Gibson, B.S. Kimberley, P.J. Maddox, S. Mastroianni,
S.J. McTavish, C. Redshaw, G.A. Solan, S. Strömberg, A.J.P. White, D.J. Williams,
J. Am. Chem. Soc. 121 (1999) 8728.
[34] R. Mukherjee, Coord. Chem. Rev. 203 (2000) 151.
[35] I.N. Stepanenko, B. Cebrián-Losantos, V.B. Arion, A.A. Krokhin, A.A. Nazarov, B.K.
Keppler, Eur. J. Inorg. Chem. (2007) 400.
[36] M. Daoudi, N.B. Larbi, A. Kerbal, B. Bennani, J.-P. Launay, J. Bonvoisin, T.B. Hadda, P.H.
Dixneuf, Tetrahedron 62 (2006) 3123.
[37] J. Pons, A. Chadghan, A. Alvarez-Larena, J.F. Piniella, J. Ros, Inorg. Chim. Acta 324
(2001) 342.
[56] N. Zhao, M.J. Van Stipdonk, D.M. Eichhorn, Polyhedron 26 (2007) 2449.
[57] I. Kuzu, I. Krummenacher, I.J. Hewitt, Y. Lan, V. Mereacre, A.K. Powell, P. Höfer, J.
Harmer, F. Breher, Chem. Eur. J. 15 (2009) 4350.
[58] C. Bianchini, G. Giambastiani, G. Mantovani, A. Meli, D. Mimeau, J. Organomet.
Chem. 689 (2004) 1356.
[38] R. Touzani, A. Ramdani, T. Ben-Hadda, S.E. Kadiri, O. Maury, H.L. Bozec, P.H.
Dixneuf, Synth. Commun. 31 (2001) 1315.
[39] A.R. Karam, E.L. Catarí, F. López-Linares, G. Agrifoglio, C.L. Albano, A. Díaz-Barrios,
T.E. Lehmann, S.V. Pekerar, L.A. Albornoz, R. Atencio, T. González, H.B. Ortega, P.
Joskowics, Appl. Catal., A 280 (2005) 165.
[59] M.D. Fryzuk, D.B. Leznoff, R.C. Thompson, S.J. Rettig, J. Am. Chem. Soc. 120 (1998)
10126.
[40] N. Ajellal, M.C.A. Kuhn, A.D.G. Boff, M. Hörner, C.M. Thomas, J.-F. Carpentier, O.L.
Casagrande Jr., Organometallics 25 (2006) 1213.
[60] B.K. Bahuleyan, D. Chandran, C.H. Kwak, C.-S. Ha, I. Kim, Macromol. Res. 18 (2008)
745.
[41] S.J. Dougan, M. Melchart, A. Habtemariam, S. Parsons, P.J. Sadler, Inorg. Chem. 45
(2006) 10882.
[61] J. Li, H. Song, C. Cui, Appl. Organomet. Chem. 24 (2010) 82.
[62] X. He, Y. Yao, X. Luo, J. Zhang, Y. Liu, L. Zhang, Q. Wu, Organometallics 22 (2003)
4952.
[42] N. Singh, N.K. Sangwan, K.S. Dhindsa, Pest Manag. Sci. 56 (2000) 284.
[43] E. Budzisz, U. Krajewska, M. Rozalski, A. Szulawska, M. Czyz, B. Nawrot, Eur. J.
Pharmacol. 502 (2004) 59.