Journal of the American Chemical Society
COMMUNICATION
distances, as observed in free N2O. The two other reported
examples of well-characterized monometallic N2O complexes,
both on ruthenium, have been assigned as N-bound isomers.15,19
The N-bound nature of the ligand and the steric protection of
the ligand “pickets” are likely contributing factors in preventing
vanadium(V)-oxo formation.
support. Computational facilities used in this study were funded
in part by the National Science Foundation grant CHE-0840505.
We thank Joe Zadrozny and Prof. Jeff Long for the acquisition of
SQUID data, and Profs. F. Dean Toste and Robert G. Bergman
for use of their groups’ in situ IR spectrophotometer.
As a further probe into the binding mode of N2O in complex 2,
we carried out DFT calculations using the crystallographically
determined structure as a basis for geometry optimization.20 When
the N-bound isomer was utilized as a starting point, the structure
converged on a geometry that agreed well with the input (Table 1).
However, when the binding of N2O to the vanadium center was
switched to O-bound in silico, the N2O ligand took on a significant
bend at the oxygen atom (144ꢀ), and the bond lengths converged
on a structure in which the N-O and N-N distances again
resemble those in free N2O and are not consistent with the observed
crystallographic data (Supporting Information, Table S2).
The calculated vibrational frequencies for each isomer alone are
inconclusive, but when free N2O is calculated using the same
computational method, the picture becomes clearer. The differences
between the experimental and calculated values for free N2O are
nearly identical to the differences between the experimental data on 2
and those calculated for the N-bound isomer (Table S2). Therefore,
we assign these deviations to a systematic error in the calculation and
continue to favor an N-bound assignment based on all available
experimental and computational data. Finally, from the DFT calcula-
tions, we confirmed the electronic structure of 2 and visualized the
critical bonding orbitals. In the three-fold symmetric field provided by
the (tpaMes)V platform, the dxz and dyz orbitals of vanadium hold the
two unpaired electrons of 2, which backbond weakly into the
degenerate π* orbitals of the N2O ligand (Figure 2b,c). The lone
pair of N2O contributes to the bonding combination of all nitrogen
lone pairs around the metal into dz2 that falls as the HOMO-4. We
suggest that the three-fold symmetric environment provides a key
factor in stabilizing the putative d2 metal-N2O adduct, as distortions
to lower symmetries will weaken these π-accepting interactions.
In conclusion, we have presented the synthesis of a unique
vanadium complex that reversibly binds N2O at room temperature,
the single-crystal X-ray structure of this well-defined monometallic
N2O complex, and vibrational and DFT studies to support its assign-
ment as an N-bound metal-N2O adduct. Efforts to use (tpaMes)-
V(N2O) and related species as a source of activated N2O in stoich-
iometric and catalytic oxidation reactions are currently underway.
’ REFERENCES
(1) Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M.,
Averyt, K., Tignor, M. M. B., Miller, H. L., Eds. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, 2007; Cambridge University Press: Cambridge, UK,
2007.
(2) Ravishankara, A. R.; Daniel, J. S.; Portmann, R. W. Science 2009,
326, 123.
(3) (a) Leont’ev, A.; Fomicheva, O.; Proskurnina, M.; Zefirov, N.
Russ. Chem. Rev. 2001, 70, 91. (b) Tolman, W. B. Angew. Chem., Int. Ed.
2010, 49, 1018.
(4) (a) Bottomley, F.; Brintzinger, H. H. J. Chem. Soc., Chem.
Commun. 1978, 234. (b) Bottomley, F.; Lin, I.; Mukaida, M. J. Am.
Chem. Soc. 1980, 102, 5238. (c) Bottomley, F.; Paez, D. E.; White, P. S. J.
Am. Chem. Soc. 1981, 103, 5581. (d) Bottomley, F.; Paez, D. E.; White,
P. S. J. Am. Chem. Soc. 1982, 104, 5651.
(5) (a) Whited, M. T.; Grubbs, R. H. J. Am. Chem. Soc. 2008, 130,
16476. (b) Harrold, N. D.; Waterman, R.; Hillhouse, G. L.; Cundari,
T. R. J. Am. Chem. Soc. 2009, 131, 12872.
(6) (a) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Inorg. Chem.
1994, 33, 1448. (b) Baranger, A. M.; Hanna, T. A.; Bergman, R. J. Am.
Chem. Soc. 1995, 117, 10041. (c) Dionne, M.; Jubb, J.; Jenkins, H.;
Wong, S.; Gambarotta, S. Inorg. Chem. 1996, 35, 1874. (d) Figueroa,
J. S.; Cummins, C. C. J. Am. Chem. Soc. 2003, 125, 4020. (e) Harman,
W. H.; Chang, C. J. J. Am. Chem. Soc. 2007, 129, 15128. (f) Andino, J. G.;
Kilgore, U. J.; Pink, M.; Ozarowski, A.; Krzystek, J.; Telser, J.; Baik, M.-
H.; Mindiola, D. J. Chem. Sci. 2010, 1, 351.
(7) (a) Evans, W.; Grate, J.; Bloom, I.; Hunter, W. E.; Atwood, J. L. J.
Am. Chem. Soc. 1985, 107, 405. (b) Berg, D.; Burns, C.; Andersen, R.;
Zalkin, A. Organometallics 1989, 8, 1865. (c) Smith, M., III; Matsunaga,
P.; Andersen, R. J. Am. Chem. Soc. 1993, 115, 7049. (d) Howard, W.;
Trnka, T.; Waters, M.; Parkin, G. J. Organomet. Chem. 1997, 528, 95. (e)
McNeill, K.; Bergman, R. J. Am. Chem. Soc. 1999, 121, 8260.
(8) (a) Matsunaga, P.; Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem.
Soc. 1993, 115, 2075. (b) Koo, K.; Hillhouse, G.; Rheingold, A.
Organometallics 1995, 14, 456.
(9) (a) Bleeke, J.; Behm, R. J. Am. Chem. Soc. 1997, 119, 8503. (b)
Kaplan, A.; Bergman, R. Organometallics 1998, 17, 5072. (c) Lee, J.; Pink,
M.; Tomaszewski, J.; Fan, H.; Caulton, K. J. Am. Chem. Soc. 2007, 129,
8706. (d) Bar-Nahum, I.; Gupta, A.; Huber, S.; Ertem, M.; Cramer, C.;
Tolman, W. J. Am. Chem. Soc. 2009, 131, 2812.
(10) (a) Yamamoto, A.; Kitazume, S.; Pu, L.; Ikeda, S. J. Am. Chem.
Soc. 1971, 93, 371. (b) Groves, J.; Roman, J. J. Am. Chem. Soc. 1995, 117,
5594.
(11) (a) Vaughan, G.; Rupert, P.; Hillhouse, G. J. Am. Chem. Soc.
1987, 109, 5538. (b) Vaughan, G. A.; Sofield, C. D.; Hillhouse, G. L.;
Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 5491. (c) Demir, S.;
Montalvo, E.; Ziller, J. W.; Meyer, G.; Evans, W. J. Organometallics 2010,
29, 6608.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details, details
b
on DFT calculations, supporting figures, and complete ref 20;
X-ray structure information in CIF format. This material is
’ AUTHOR INFORMATION
(12) Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C.;
Protasiewicz, J. D. J. Am. Chem. Soc. 1995, 117, 4999.
Corresponding Author
(13) (a) Otten, E.; Neu, R. C.; Stephan, D. W. J. Am. Chem. Soc.
2009, 131, 9918. (b) Neu, R. C.; Otten, E.; Stephan, D. W. Angew. Chem.,
Int. Ed. 2009, 48, 9709. (c) Neu, R. C.; Otten, E.; Lough, A. J.; Stephan,
D. W. Chem. Sci. 2011, 2, 170.
(14) Armor, J. N.; Taube, H. J. Am. Chem. Soc. 1969, 91, 6874.
(15) Pamplin, C.; Ma, E.; Safari, N.; Rettig, S.; James, B. J. Am. Chem.
Soc. 2001, 123, 8596.
(16) Incomplete removal of LiCl can result in isolation of the red
complex [Li(solv)n][(tpaMes)VCl], which has been identified by X-ray
diffraction.
’ ACKNOWLEDGMENT
This work was supported by DOE/LBNL Grant 403801 and
the Packard Foundation. C.J.C. is an Investigator with the
Howard Hughes Medical Institute. We thank the Miller Institute
for Basic Research (N.A.P.) and Arkema (W.H.H.) for fellowship
2110
dx.doi.org/10.1021/ja110798w |J. Am. Chem. Soc. 2011, 133, 2108–2111