Bertrand has used strong bases to functionalize the C4
position of C2-substituted imidazolium salts via so-called
abnormal carbenes,7 and Robinson has deprotonated the
C4 position of the free carbene N,N0-(2,6-diisopropyl-
phenyl)imidazol-2-ylidene.8 The resulting lithio-carbene
was quenched with TMSCl and BH3. Direct borylation
of carbenes by very strong electrophiles is also possible.9
Imidazol-2-ones10 and -2-thiones11 are also useful NHC
precursors that can be functionalized by metalation. Meta-
lated carbene-lanthanide12 and carbene-phosphinidene13
complexes have also been described.
Carbene-boranes14 are an increasingly valuable class of
synthetic reagents15 and polymerization co-initiators,16
spurring demand for ring-functionalized variants. Such
boranes are very stable, and their BꢀH protons are weakly
basic, not acidic.17 Cavel observed fluorine promoted H/D
exchange on the imidazolylidene rings of an unusual bis-
carbene trifluoroborane under forcing conditions (100 °C,
100 h).18 Later, we described the first example of a ring-
metalated carbene trihydridoborane (see below).19 And
recently Roesky reported the deprotonation of dipp-Imd-
Figure 2. Proposed generation and trapping of lithiated car-
bene-boranes (top) and a clue that such reactions were possible
(bottom).
BH3 (1d) by BuLi and solved the crystal structure of the
lithiated intermediate (2 with R = H, R0 = dipp).20
Here we show that direct lithiation of N,N0-disubstituted
imidazol-2-ylidene-boranes 1 is a general reaction that has
significant preparative value. Onward reactions of the
resulting lithiated intermediates 2 with electrophiles (E)
to form diverse new ring-substituted carbene-boranes 3 are
studied (Figure 2, top). Repeat metalation and functiona-
lization of C5 to give 4 are also demonstrated. Sample
deboronation reactions prove the principle that lithiated
reagent 2 is the synthetic equivalent of the imaginary
“deprotonated imidazolium ion” synthon.
We recently developed a procedure for reductive lithia-
tion of boronꢀhalide bonds of such complexes by reaction
of boryl iodide 5 with lithium di-tert-butylbiphenylide
(Figure 2, bottom).19 Trapping of this intermediate with
ethyloxirane provided the expected B-alkylated product 6
in 34% yield with substantial amounts (30%) of a bis-B/C-
alkylated product 7, evidently a secondary product derived
from deprotonation of 6 at C4.
(7) Mendoza-Espinosa, D.; Donnadieu, B.; Bertrand, G. J. Am.
Chem. Soc. 2010, 132, 7264–7265.
(8) (a) Wang, Y.; Xie, Y.; Abraham, M. Y.; Wei, P.; Schaefer, H. F.;
Schleyer, P. v. R.; Robinson, G. H. J. Am. Chem. Soc. 2010, 132, 14370–
14372. (b) Wang, Y.; Xie, Y.; Abraham, M. Y.; Wei, P.; Schaefer, H. F.;
Schleyer, P. v. R.; Robinson, G. H. Organometallics 2011, 30, 1303–
1306.
(9) For a recent example, see: Kronig, S.; Theuergarten, E.;
Holschumacher, D.; Bannenberg, T.; Daniliuc, C. G.; Jones,
P. G.; Tamm, M. Inorg. Chem. 2011, 50, 7344–7359.
(10) Llopart, C. C.; Ferrer, C.; Joule, J. A. Can. J. Chem. 2004, 82,
1649–1661.
(11) Arduengo, A. J., III; Bannenberg, T. P.; Tapu, D.; Marshall,
W. J. Chem. Lett. 2005, 34, 1010–1011.
(12) Arnold, P. L.; Liddle, S. T. Organometallics 2006, 25, 1485–1491.
(13) Wang, Y.; Xie, Y.; Abraham, M. Y.; Gilliard, R. J.; Wei, P.;
Schaefer, H. F.; Schleyer, P. v. R.; Robinson, G. H. Organometallics
2010, 29, 4778–4780.
(14) Curran, D. P.; Solovyev, A.; MakhloufBrahmi, M.; Fensterbank,
L.; Malacria, M. Angew. Chem. Int. Ed. 2011, 50, 10294ꢀ10317.
(15) (a) Ueng, S.-H.; Makhlouf Brahmi, M.; Derat, E.; Fensterbank,
^
L.; Lacote, E.; Malacria, M.; Curran, D. P. J. Am. Chem. Soc. 2008, 130,
10082–10083. (b) Chu, Q.; Makhlouf Brahmi, M.; Solovyev, A.; Ueng,
^
S.-H.; Curran, D.; Malacria, M.; Fensterbank, L.; Lacote, E. Chem.;
Eur. J. 2009, 15, 12937–12940. (c) Monot, J.; Makhlouf Brahmi, M.;
Ueng, S.-H.; Robert, C.; Desage-El Murr, M.; Curran, D. P.; Malacria,
Preliminary experiments showed that BuLi was a con-
venient base for deprotonation. Table 1 shows the results
of lithiation and silylation of a series of imidazolylidene
complexes NHC-BH3 (1aꢀe) bearing different N-substi-
tuents. The carbene-boranes are all known and readily
available. In a typical experiment, 1 equiv of BuLi was
added to a solution of diiPr-Imd-BH3 1a in THF. After
5 min, the resulting anion was quenched by addition of
1.1 equiv of trimethylsilyl chloride. Standard workup and
flash chromatography provided C4-silylated product 8a in
93% isolated yield (entry 1).
Good yields of C4-silylated products were obtained with
several N-alkyl (entries 1ꢀ3) and N-aryl (entries 4ꢀ5)
substituted imidazol-2-ylidene-boranes. The products of
the reactions 8aꢀe are generally stable white solids that are
^
M.; Fensterbank, L.; Lacote, E. Org. Lett. 2009, 11, 4914–4917. (d)
^
Ueng, S.-H.; Fensterbank, L.; Lacote, E.; Malacria, M.; Curran, D. P.
Org. Biomol. Chem. 2011, 9, 3415–3420. (e) Ueng, S.-H.; Fensterbank,
^
L.; Lacote, E.; Malacria, M.; Curran, D. P. Org. Lett. 2010, 12, 3002–
3005.
(16) (a) Tehfe, M.-A.; Makhlouf Brahmi, M.; Fouassier, J.-P.;
Curran, D. P.; Malacria, M.; Fensterbank, L.; Lacote, E.; Lalevee, J.
Macromolecules 2010, 43, 2261–2267. (b) Tehfe, M.-A.; Monot, J.;
Makhlouf Brahmi, M.; Bonin-Dubarle, H.; Curran, D. P.; Malacria,
^
ꢀ
^
M.; Fensterbank, L.; Lacote, E.; Lalevee, J.; Fouassier, J.-P. Polym.
ꢀ
Chem. 2011, 2, 625–631.
(17) (a) Nielsen, D. J.; Cavell, K. J.; Skelton, B. W.; White, A. H.
Inorg. Chim. Acta 2003, 352, 143–150. (b) Clyburne observed a close
contact in the crystal structure of 1,3-dimesitylimidazol-2-ylidene-bor-
ane between the BꢀH bond of one complex and the C4ꢀH bond of
another, implying that the latter bond might be acidic. Ramnial, T.;
Jong, H.; McKenzie, I. D.; Jennings, M.; Clyburne, J. A. C. Chem.
Commun. 2003, 1722–1723.
(18) Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria,
^
M.; Lacote, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072–
15080.
ꢀ
(19) Monot, J.; Solovyev, A.; Bonin-Dubarle, H.; Derat, E.; Curran,
^
D. P.; Robert, M.; Fensterbank, L.; Malacria, M.; Lacote, E. Angew.
ꢁ
(20) Jana, A.; Azhakar, R.; Tavcar, G.; Roesky, H. W.; Objartel, I.;
Chem. Int. Ed. 2010, 49, 9166–9169.
Stalke, D. Eur. J. Inorg. Chem. 2011, 3686–3689.
Org. Lett., Vol. 13, No. 22, 2011
6043