C. Pabba et al. / Bioorg. Med. Chem. Lett. 21 (2011) 324–328
327
tory effect on HDACs. We have shown that the potency depends on
the substitution pattern on the arene ring. We have also observed
the multifold increase in activity with the replacement of large
arylsulfone group with the corresponding aryl ether. SAR results
with the aryl ether hydroxamic acids are consistent with the
hypothesis that these HDAC inhibitors operate as mimetics of the
natural product TSA. These small molecule aryl ether hydroxamic
acids may be useful as tools for biological research and as orally
bioavailable anticancer drugs. Currently, further detailed SAR stud-
ies and the next stage of evaluation are underway.
Acknowledgments
We would like to thank Drs. David M. Vigushin, R. Charles
Coombes, Christophe Tratrat and Anthony G. M. Barrett of the
Departments of Chemistry and Cancer Medicine, Imperial College,
London and Drs. Bruce F. Molino, Cheryl Garr, and Barry Berkowitz
for their support on this project as well as Susan Mulligan and John
Dolan for their contributions.
References and notes
1. (a) Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. J. Med. Chem. 2008, 51,
1505; (b) Cang, S.; Ma, Y.; Liu, D. J. Hematol. Oncol. 2009, 22, 9; (c) Manzo, F.;
Tambaro, F. P.; Mai, A.; Altucci, L. Expert Opin. Ther. Patents 2009, 19, 761; (d)
Tibes, U. et al Prog. Med. Chem. 2008, 46, 205; (e) Villar, G. A.; Esteller, M. Int. J.
Cancer 2004, 112, 171; (f) Park, J.-H.; Jung, Y.; Kim, Y. Y.; Kim, S. G.; Jong, H.-S.;
Lee, J. W.; Kim, D.-K.; Lee, J.-S.; Kim, N. K.; Kim, T.-Y.; Bang, Y.-J. Clin. Cancer Res.
2004, 10, 5721; (g) Xie, A.; Liao, C.; Li, Z.; Ning, Z.; Hu, W.; Lu, X.; Shi, L.; Zhou, J.
J. Curr. Med. Chem. Anti-Cancer Agents 2004, 4, 273; (h) Marks, P. A.; Miller, T.;
Richon, V. M. Curr. Opin. Pharmacol. 2003, 3, 344; (i) Bouchain, G.; Delrome, D.
Curr. Med. Chem. 2003, 10, 2359; (j) Crews, C. M.; Shotwell, J. B. Prog. Cell Cycle
Res. 2003, 5, 125; (k) Kelly, W. K.; O’Connor, O. A.; Marks, P. A. Expert Opin.
Invest. Drugs 2002, 11, 1695; (l) Grossmann, A.; Weidle, U. H. Anticancer Res.
2000, 20, 1471; (m) Bertrand, P. Eur. J. Med. Chem. 2010, 45, 2095; (n) ten Holte,
P.; Van Emelen, K.; Janicot, P. C.; de Bono, J. S.; Arts, J. Top. Med. Chem. 2007, 1,
293.
Figure 2. Model of HDAC2 and TSA. (a) Interaction diagram for the HDAC2 model
with TSA. (b) 3D image of the HDAC2:TSA and HDAC2:19f.complexes. A brown
surface surrounds the TSA ligand and a white surface outlines the binding pocket.
Images generated using MOE software.14
2. (a) Marson, C. M.; Mahadevan, T.; Dines, J.; Sengmany, S.; Morell, J. M.; Alao, J.
P.; Joel, P. S.; Vigushin, D. M.; Coombes, R. C. Bioorg. Med. Chem. 2007, 17, 136;
(b) Varshochi, R.; Halim, F.; Sunters, A.; Alao, J. P.; Madureira, P. A.; Hart, S. M.;
Ali, S.; Vigushin, D. M.; Coombes, R. C.; Lam, E. W. J. Biol. Chem. 2005, 280, 3185;
(c) Vigushin, D. M.; Ali, S.; Pace, P. E.; Mirsaidi, N.; Ito, K.; Adcock, I.; Coombes,
R. C. Clin. Cancer Res. 2001, 7, 971.
HDAC-2:inhibitor structure was disclosed (pdb code: 3max) and
this structure was used as a starting point for the protein structure.
Details of the modeling are described in Ref. 13. Figure 2 illustrates
the final model for the TSA molecule and 19f. The zinc binding site
remains nearly static over the course of the simulation along with
the diene portion of TSA. Phe210, Phe155 and Leu 276 form a
hydrophobic pocket for the ketone/aryl-oxy linker. The variability
observed in the SAR is consistent in the changes from 19 (R = H)
to 20 (R = Me) since the closest point of contact is Phe210 accord-
ing to this model. The dimethyl amino group of TSA and the CF3
group of 19f fill similar areas of the solvent exposed region and
illustrates that substantial variation is tolerated at this position
in the SAR of 19 and 20. The phenyl group prefers to pack edge-
on against relatively rigid hydrophobic pocket formed by Leu276,
Pro34 and Phe155 side chains with the opposite edge solvent ex-
posed. These observations lead us to an explanation of the strong
preference of the ether linkage over the sulfone. Asp104 is rela-
tively free to move away from the phenyl group and ketone of
TSA. In 19 and 20, the linking group is small and freely rotating
and therefore allows the inhibitors to pack pendant aromatic moi-
eties in the hydrophilic face of the channel leading to the solvent
exposed region. However, we hypothesize that the larger sulfone
linker of 23 interacts unfavorably with Leu276 and potentially with
Asp104 and therefore sulfonyl-containing compounds are unlikely
to adapt their conformations to the hydrophobic pocket of the
channel. Previous work12 indicates that sulfonyl groups may be
permitted in this region of the binding site when these compounds
contain a more flexible, saturated spacer permitting more signifi-
cant accommodation of the sulfonyl-aromatic cap.
3. (a) Flemming, I.; Iqbal, J.; Krebs, E.-P. Tetrahedron 1983, 39, 841; (b) Mori, K.;
Koseki, K. Tetrahedron 1988, 44, 6013; (c) Hosokawa, S.; Ogura, T.; Togashi, H.;
Tatsuta, K. Tetrahedron Lett. 2005, 46, 333; (d) Yurek-George, A.; Habens, F.;
Brimmell, M.; Packham, G.; Ganesan, A. J. Am. Chem. Soc. 2004, 126, 1030.
4. (a) Dai, Y.; Guo, Y.; Guo, J.; Pease, L. J.; Li, J.; Marcotte, P. A.; Glaser, K. B.; Tapang,
P.; Albert, D. H.; Richardson, P. L.; Davidsen, S. K.; Michaelides, M. R. Bioorg.
Med. Chem. Lett. 2003, 13, 1897; (b) Kim, D.-K.; Lee, Y. J.; Kim, J.-S.; Ryu, J.-H.;
Choi, J.-Y.; Lee, J. W.; Im, G.-J.; Kim, T.-K.; Seo, J. W.; Park, H.-J.; Yoo, J.; Park, J.-
H.; Kim, T.-Y.; Bang, Y.-J. J. Med. Chem. 2003, 46, 5745; (c) Mai, A.; Massa, S.;
Pezzi, R.; Rotilli, D.; Loidl, P.; Brosch, G. J. Med. Chem. 2003, 46, 4826; (d)
Remiszewski, S. W.; Sambucetti, L. C.; Bair, K. W.; Bontempo, J.; Cesarz, D.;
Chandramouli, N.; Chen, R.; Cheung, M.; Cornell-Kennon, S.; Dean, K.;
Diamantidis, G.; France, D.; Green, M. A.; Howell, K. L.; Kashi, R.; Kwon, P.;
Lassota, P.; Martin, M. S.; Mou, Y.; Perez, L. B.; Sharma, S.; Smith, T.; Sorensen,
E.; Taplin, F.; Trogani, N.; Versace, R.; Walker, H.; Weltchek-Engler, S.; Wood,
A.; Wu, A.; Atadja, P. J. Med. Chem. 2003, 46, 4609; (e) Bouchain, G.; Leit, S.;
Frechette, S.; Khalil, E. A.; Lavoie, R.; Moradei, O.; Woo, S. H.; Fournel, M.; Yan,
P. T.; Kalita, A.; Trachy-Bourget, M.-C.; Beaulieu, C.; Li, Z.; Robert, M.-F.;
MacLeod, A. R.; Besterman, J. M.; Delorme, D. J. Med. Chem. 2003, 46, 820; (f)
Woo, S. H.; Frechette, S.; Khalil, E. A.; Bouchain, G.; Vaisburg, A.; Bernstein, N.;
Moradei, O.; Leit, S.; Allan, M.; Fournel, M.; Trachy-Bourget, M.-C.; Li, Z.;
Besterman, J. M.; Delorme, D. J. Med. Chem. 2002, 45, 2877; (g) Mai, A.; Massa,
S.; Ragno, R.; Esposito, M.; Sbardella, G.; Nocca, G.; Scatena, R.; Jesacher, F.;
Loidl, P.; Brosch, G. J. Med. Chem. 2002, 45, 1778; (h) Remiszewski, S. W.;
Sambucetti, L. C.; Atadja, P.; Bair, K. W.; Cornell, W. D.; Green, M. A.; Howell, K.
L.; Jung, M.; Kwon, P.; Trogani, N.; Walker, H. J. Med. Chem. 2002, 45, 753; (i)
Fournel, M.; Bourget, M.-C. T.; Yan, P. T.; Kalita, A.; Bonfils, C.; Beaulieu, C.;
Frecherte, S.; Leit, S.; Abu-Khalil, E.; Woo, S.-H.; Delorme, D.; MacLeod, A. R.;
Besterman, J. M.; Li, Z. Cancer Res. 2002, 63, 4325.
5. (a) Mudler, G. J.; Merman, J. H. Environ. Health Perspect. 1983, 49, 5097; (b)
Vassiliou, S.; Mucha, A.; Cuniasse, P.; Georgiadis, D.; Lucet-Levannier, K.; Beau,
F.; Kannan, R.; Murphy, G.; Knaeper, V.; Rio, M. C.; Basset, P.; Yiotakis, A.; Dive,
V. J. Med. Chem. 1999, 42, 2610.
6. (a) Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks, P.
A.; Breslow, R.; Pavletich, N. Nature 1999, 401, 188; SAHA was approved by FDA
In summary, we have designed and synthesized a series of sul-
fone and aryl ether based TSA analogs, and evaluated their inhibi-