ORGANIC
LETTERS
2011
Vol. 13, No. 5
872–875
Photochemical Eliminations Involving
Zwitterionic Intermediates Generated via
Electrocyclic Ring Closure of
Benzothiophene Carboxanilides
Majher Sarker, Tasnuva Shahrin, and Mark G. Steinmetz*
Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881,
United States
Received December 3, 2010
ABSTRACT
Leaving groups such as carboxylate, thiolate, and phenolate are expelled via zwitterionic intermediates produced upon photochemical
electrocyclic ring closure of benzothiophene carboxanilides in the triplet excited state. Chemical yields generally exceed 90%, while quantum
yields vary with basicity of the released leaving group.
Photochemical electrocyclic ring closure of R,β-unsatu-
rated anilides is thought to produce intermediates that
have zwitterionic character (Scheme 1).1-4 Such zwitter-
ionic intermediates as 2 should be capable of expelling
leaving group anions (LG-), such as carboxylate and
phenolate groups,5,6 which represent functionality present
in numerous biomolecules. The expectation is that the
photochemistry could constitute the basis for the design
of a new class of “cage” compounds, which are generally
used in biological applications for the photolytic genera-
tion of locally high concentrations of biological substrates
in cells and tissue.7
Our recent study used a photochemical electrocyclic ring
closure to generate zwitterionic intermediates from acrylic
anilides.3 The photochemical electrocyclization was 8-10%
efficient with respect to light utilization. However, the leaving
groups were evidently not expelled directly from the puta-
tive zwitterionic intermediate, unlike Scheme 1, but instead
(1) (a) Ninomiya, I.; Naito, T. Heterocycles 1981, 15, 1433–1462. (b)
Lenz, G. R. Synthesis 1978, 489–518. (c) Campbell, A. L.; Lenz, G. R.
Synthesis 1987, 421–452.
(2) (a) Cleveland, P. G.; Chapman, O. L. Chem. Commun. 1967,
1064–1065. (b) Ogata, Y.; Takagi, K.; Ishino, I. J. Org. Chem. 1971, 36,
3975–3979. (c) Nishio, T.; Tabata, M.; Koyama, H.; Sakamoto, M.
Helv. Chim. Acta 2005, 88, 78–86. (d) Nishio, T.; Koyama, H.; Sasaki,
D.; Sakamoto, M. Helv. Chim. Acta 2005, 88, 996–1003.
(3) (a) Jia, J.; Steinmetz, M. G.; Shukla, R.; Rathore, R. Tetrahedron
Lett. 2008, 49, 4621–4623. (b) Jia, J.; Sarker, M.; Steinmetz, M. G.;
Shukla, R.; Rathore, R. J. Org. Chem. 2008, 73, 8867–8879.
(4) (a) Ayitou, A. J.-L.; Sivaguru, J. J. Am. Chem. Soc. 2009, 131,
5036–5037. (b) Ayitou, A.J.-L.; Ugrinov, A.; Sivaguru, J. Photochem.
Photobiol. Sci. 2009, 8, 751–754.
(5) (a) Ma, C.; Steinmetz, M. G.; Cheng, Q.; Jayaraman, V. Org. Lett.
2003, 5, 71–74. (b) Ma, C.; Steinmetz, M. G.; Kopatz, E. J.; Rathore, R.
Tetrahedron Lett. 2005, 46, 1045–1048. (c) Ma, C.; Steinmetz, M. G.;
Kopatz, E. J.; Rathore, R. J. Org. Chem. 2005, 70, 4431–4442.
(6) (a) Ma, C.; Steinmetz, M. G. Org. Lett. 2004, 6, 629–632. (b) Ma,
C.; Chen, Y.; Steinmetz, M. G. J. Org. Chem. 2006, 71, 4206–4215.
(7) (a) Marriott, G., Ed. Methods in Enzymology; Academic Press: San
Diego, 1998; Vol. 291. (b) Goeldner, M.; Givens, R. Dynamic Studies in
Biology; Wiley-VCH: Weinheim, 2005. (c) Pellicioli, A. P.; Wirz, J. Photo-
chem. Photobiol. Sci. 2002, 1, 441–458. (d) Mayer, G.; Heckel, A. Angew.
Chem., Int. Ed. 2006, 45, 4900–4921.
r
10.1021/ol102932y
Published on Web 01/26/2011
2011 American Chemical Society