interactions were analyzed by the natural bond orbital (NBO)
method at the B3LYP/6-311+G(d,p) level, and charges were
calculated by natural population analysis (NPA). The nature of
weak intramolecular Se ◊ ◊ ◊ O interactions was further analyzed
by inspecting properties of the bond critical points between
selenium and heteroatoms within Bader’s Atoms in Molecule
(AIM) framework, using the AIM2000 package24 at the B3LYP/6-
311+G(d,p) level.
and C. M. Andersson, J. Am. Chem. Soc., 1992, 114, 9737; (c) M.
Iwaoka and S. Tomoda, J. Am. Chem. Soc., 1994, 116, 2557; (d) M.
Iwaoka and S. Tomoda, J. Am. Chem. Soc., 1996, 118, 8077; (e) G.
Mugesh, A. Panda, H. B. Singh, N. S. Punekar and R. J. Butcher,
Chem. Commun., 1998, 2227; (f) G. Mugesh, W.-W. du Mont and H.
Sies, Chem. Rev., 2001, 101, 2125; (g) G. Mugesh, A. Panda, H. B.
Singh, N. S. Punekar and R. J. Butcher, J. Am. Chem. Soc., 2001, 123,
839.
6 S. S. Zade, S. Panda, S. K. Tripathi, H. B. Singh and G. Wolmersha¨user,
Eur. J. Org. Chem., 2004, 3857.
7 K. P. Bhabak and G. Mugesh, Chem.–Eur. J., 2007, 13, 4594 .
8 (a) T. Wirth, Molecules, 1998, 3, 164; (b) T. G. Back, Z. Moussa and
M. Parvez, Angew. Chem., Int. Ed., 2004, 43, 1268; (c) S. K. Tripathi,
U. Patel, D. Roy, R. B. Sunoj, H. B. Singh, G. Wolmersha¨user and R.
J. Butcher, J. Org. Chem., 2005, 70, 9237.
Coupled Reductase Assay
The GPx-like activity of 15, 17, 20, 22 and 23 were measured
spectrophotometrically according to the literature method5a using
ebsele◦n 1 as the standard. The catalytic reaction was carried out
at 27 C in 1 mL of the solution containing 100 mM potassium
phosphate buffer, pH 7.5, 1 mM EDTA, 2 mM GSH, 0.4 mM
of NADPH, 1.6 unit of glutathione reductase, 80 mM of catalyst
and 1.6 mM of H2O2. The activity was followed by the decrease of
NADPH absorption at 340 nm (eqn 1–3). Each initial rate for all
the compounds was measured at least four times and calculated
from the first 5–10% of the reaction by using 6.22 ¥ 103 M-1cm-1
as the molar extinction coefficient for NADPH.
9 (a) T. G. Back and Z. Moussa, J. Am. Chem. Soc., 2002, 124, 12104;
(b) T. G. Back and Z. Moussa, J. Am. Chem. Soc., 2003, 125, 13455;
(c) T. G. Back, D. Kuzma and M. Parvez, J. Org. Chem., 2005, 70, 9230;
(d) D. J. Press, E. A. Mercier, D. Kuzma and T. G. Back, J. Org. Chem.,
2008, 73, 4252.
10 S. S. Zade, H. B. Singh and R. J. Butcher, Angew. Chem., Int. Ed., 2004,
43, 4513.
11 D. Kuzma, M. Parvez and T. G. Back, Org. Biomol. Chem., 2007, 5,
3213.
12 S.-C Yu, A. Borchert, H. Kuhn and I. Ivanov, Chem.–Eur. J., 2008, 14,
7066.
13 (a) W. Nakanishi, S. Hayashi and N. Itoh, Chem. Commun., 2003, 124;
(b) T. M. Klapo¨tke, B. Krumm and K. Polborn, J. Am. Chem. Soc., 2004,
126, 710; (c) M. Iwaoka, T. Katsuda, H. Komatsu and S. Tomoda,
J. Am. Chem. Soc., 2004, 126, 5309; (d) M. Iwaoka, T. Katsuda, H.
Komatsu and S. Tomoda, J. Org. Chem., 2005, 70, 321; (e) W. Nakanishi,
T. Nakamoto, S. Hayashi, T. Sasamori and N. Tokitoh, Chem.–Eur. J.,
2007, 13, 255and references therein.
14 (a) G. Mugesh and H. B. Singh, Chem. Soc. Rev., 2000, 29, 347 and
references therein; (b) G. Mugesh and W.-W. du Mont, Chem.–Eur. J.,
2001, 7, 1365; (c) B. K. Sarma and G. Mugesh, J. Am. Chem. Soc.,
2005, 127, 11477.
GSH
(1)
(2)
(3)
2GSH +H2O2 ⎯P⎯ero⎯xida⎯se→GSSG +2H2O
GSH
GSSG +NADPH +H+ ⎯⎯⎯⎯→2GSH +NADP+
reductase
NADPH + H2O2 + H+ ⎯⎯→NADP+ + 2H2O
15 S. S. Zade, S. Panda, H. B. Singh, R. B. Sunoj and R. J. Butcher, J. Org.
Chem., 2005, 70, 3693.
Acknowledgements
16 M. Abdo and S. Knapp, J. Am. Chem. Soc., 2008, 130, 9234.
17 C. S. Salteris, I. D. Kostas, M. Micha-Screttas, G. A. Heropoulos and
C. G. Screttas, J. Org. Chem., 1999, 64, 5589.
We are grateful to the Department of Science and Technology
(DST), New Delhi for funding. S.S. is thankful to UGC, New
Delhi for SRF.
18 A. Bondi, J. Phys. Chem., 1964, 68, 441.
19 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain,O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.
Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision C.02), Gaussian, Inc., Wallingford CT, 2004.
20 (a) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88,
899; (b) E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold,
NBO Version 3.1.
Notes and references
1 (a) J. T. Rotruck, A. L. Pope, H. E. Ganther, A. B. Swanson, D. G.
Hafeman and W. G. Hoekstra, Science, 1973, 179, 588; (b) L. Flohe´, E.
A. Gu¨nzler and H. H. Schock, FEBS Lett., 1973, 32, 132; (c) O. Epp,
R. Ladenstein and A. Wendel, Eur. J. Biochem., 1983, 133, 51; (d) A.
L. Tappel, Curr. Top. Cell Regul., 1984, 24, 87; (e) Selenium in Biology
and Human health, ed. R. F. Burk, Springer-Verlag, New York, 1994.
2 (a) D. Behne, A. Kyriakopoulos, H. Meinhold and J. Ko¨hrle, Biochem.
Biophys. Res. Commun., 1990, 173, 1143; (b) J. R. Arthur, F. Nicol and
G. J. Beckett, Biochem. J., 1990, 272, 537; (c) M. J. Berry, L. Banu and
P. R. Larsen, Nature, 1991, 349, 438; (d) J. Ko¨hrle, Methods Enzymol.,
2002, 347, 125; (e) A. C. Bianco, D. Salvatore, B. Gereben, M. J. Berry
and P. R. Larsen, Endocr. Rev., 2002, 23, 38.
3 (a) S.-R. Lee, J.-R. Kim, K.-S. Kwon, H. W. Yoon, R. L. Levine, A.
Ginsburg and S. G. Rhee, J. Biol. Chem., 1999, 274, 4722; (b) C. H.
Williams Jr., L. D. Arscott, S. Mu¨ller, B. W. Lennon, M. L. Ludwig, P.-
F. Wang, D. M. Veine, K. Becker and R. H. Schirmer, Eur. J. Biochem.,
2000, 267, 6110.
21 R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford
University Press, New York, 1990.
4 (a) A. Mu¨ller, E. Cadenas, P. Graf and H. Sies, Biochem. Pharmacol.,
1984, 33, 3235; (b) A. Wendel, M. Fausel, H. Safayhi, G. Tiegs and R.
Otter, Biochem. Pharmacol., 1984, 33, 3241; (c) M. J. Parnham and S.
Kindt, Biochem. Pharmacol., 1984, 33, 3247; (d) C. W. Nogueira, G.
Zeni and J. B. T. Rocha, Chem. Rev., 2004, 104, 6255.
5 (a) S. R. Wilson, P. A. Zucker, R.-R. C. Huang and A. Spector, J. Am.
Chem. Soc., 1989, 111, 5936; (b) L. Engman, D. Stern, I. A. Cotgreave
22 R. A. Ellison and F. N. Kotsonis, J. Org. Chem., 1973, 38, 4192.
23 (a) G. M. Sheldrick, SHELXS 97. Program for Crystal Structures
SolutionUniversity of Go¨ttingen, Go¨ttingen, Germany, 1997; (b) G. M.
Sheldrick, SHELXL 97. Program for Crystal Structures Refinement,
University of Go¨ttingen, Go¨ttingen, Germany, 1997.
24 F. Biegler-Ko¨nig, J. Scho¨nbohm and D. Bayles, J. Comput. Chem., 2001,
22, 545.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 581–587 | 587
©