Journal of the American Chemical Society
Communication
S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron
Lett. 1998, 39, 2941.
from the current work may find use in the development of new,
more efficient catalysts and promoters for trifluoromethylation
methods.24
(9) For selected reviews, see: (a) Ley, S.; Thomas, A. W. Angew. Chem.,
Int. Ed. 2003, 42, 5400. (b) Beletskaya, I. P.; Cheprakov, A. V. Coord.
Chem. Rev. 2004, 248, 2337. (c) Evano, G.; Blanchard, N.; Toumi, M.
Chem. Rev. 2008, 108, 3054. (d) Monnier, F.; Taillefer, M. Angew. Chem.,
Int. Ed. 2009, 48, 6954. (e) Qiao, J. X.; Lam, P. Y. S. Synthesis 2011, 829.
(f) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C.
Chem. Rev. 2013, 113, 6234. (g) Casitas, A.; Ribas, X. Chem. Sci. 2013, 4,
2301.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental details and NMR spectra. This material is available
(10) King, A. E.; Brunold, T. C.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131,
5044.
(11) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed.
2011, 50, 11062.
AUTHOR INFORMATION
Corresponding Author
■
(12) (a) Solvents explored: DMF, THF, DME, DCE, DME, NMP,
MeCN, toluene, DMSO, and DMAC. After prolonged heating at 85 °C
in DMSO or DMF, small quantities of PhCF3 (∼5%) were formed. (b)
A mixture of 1-naphthylboronic acid pinacol ester (1 equiv) and
K+[(CF3)B(OMe)3]− (2 equiv) has been reported4e to react with CuF2
in DMSO under O2 at 80 °C to give 1-C10H7CF3 (15%), 1-C10H7OMe
(37%), and 1,1′-binaphthyl (42%).
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank F. M. Miloserdov and A. Lishchynskyi for discussions
and for valuable comments. This work was supported by the ICIQ
Foundation and the Spanish Government (grant CTQ2011-
25418). N.N. is thankful to ICIQ and Marie Curie Actions for the
cofunded “ICIQ-IPMP” postdoctoral grant award 291787.
(13) (a) These complexes were originally prepared by Levason et al.13b
by the reaction of CuF2·xH2O with bpy or phen in MeOH and
subsequently structurally characterized by Hursthouse.13c,d (b) Gibbs,
P. R.; Graves, P. R.; Gulliver, D. J.; Levason, W. Inorg. Chim. Acta 1980,
45, L207. (c) Emsley, J.; Arif, M.; Bates, P. A.; Hursthouse, M. B. J.
Crystallogr. Spectrosc. Res. 1987, 17, 605. (d) Emsley, J.; Arif, M.; Bates, P.
A.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1987, 2397.
(14) N-ligated Cu(II) fluorides conventionally contain H2O or HF
molecules H-bonded to the strongly basic F ligands.
REFERENCES
(1) Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2010, 132, 7262.
(2) Chu, L.; Qing, F.-L. Org. Lett. 2010, 12, 5060.
■
(3) (a) Jiang, X.; Chu, L.; Qing, F.-L. J. Org. Chem. 2012, 77, 1251.
(b) Zhang, K.; Qiu, X.-L.; Huang, Y.; Qing, F.-L. Eur. J. Org. Chem. 2012,
58. (c) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
(15) While the established stoichiometry-based (eq 1) composition
[(bpy)Cu(CF3)2] is correct, the exact structure of this complex is
unknown. CF3Cu(II) complexes are extremely rare; see: Jacquet, J.;
Salanouve, E.; Orio, M.; Vezin, H.; Blanchard, S.; Derat, E.; Desage-El
Murr, M.; Fensterbank, L. Chem. Commun. 2014, 50, 10394.
(16) (a) The [Cu(CF3)4]− anion has been originally observed by
Burton et al.16b and structurally characterized by Naumann’s group.16c
(b) Willert-Porada, M. A.; Burton, D. J.; Baenziger, N. C. J. Chem. Soc.,
Chem. Commun. 1989, 1633. (c) Naumann, D.; Roy, T.; Tebbe, K.-F.;
Crump, W. Angew. Chem., Int. Ed. Engl. 1993, 32, 1482.
(4) Boronic acids and boronate esters: (a) Senecal, T. D.; Parsons, A.;
Buchwald, S. L. J. Org. Chem. 2011, 76, 1174. (b) Xu, J.; Luo, D.-F.; Xiao,
B.; Liu, Z.-J.; Gong, T.-J.; Fu, Y.; Liu, L. Chem. Commun. 2011, 47, 4300.
(c) Zhang, C.-P.; Cai, J.; Zhou, C.-B.; Wang, X.-P.; Zheng, X.; Guc, Y.-
C.; Xiao, J.-C. Chem. Commun. 2011, 47, 9516. (d) Liu, T.; Shen, Q. Org.
Lett. 2011, 13, 2342. (e) Khan, B. A.; Buba, A. E.; Gooßen, L. J. Chem.
Eur. J. 2012, 18, 1577. (f) Litvinas, N. D.; Fier, P. S.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2012, 51, 536. (g) Liu, T.; Shao, X.; Wu, Y.; Shen, Q.
Angew. Chem., Int. Ed. 2012, 51, 540. (h) Novak
Grushin, V. V. Angew. Chem., Int. Ed. 2012, 51, 7767. (i) Ye, Y.; Sanford,
M. S. J. Am. Chem. Soc. 2012, 134, 9034. (j) Ye, Y.; Kunzi, S. A.; Sanford,
́
, P.; Lishchynskyi, A.;
(17) [(bpy)Cu(CF3)3] has been recently synthesized by an
independent route and structurally characterized in our laboratories.
Results of these studies will be reported separately.
̈
M. S. Org. Lett. 2012, 14, 4979. (k) Li, Y.; Wu, L.; Neumann, H.; Beller,
M. Chem. Commun. 2013, 49, 2628. (l) Presset, M.; Oehlrich, D.;
Rombouts, F.; Molander, G. A. J. Org. Chem. 2013, 78, 12837.
(5) Terminal acetylenes: (a) Luo, D.-F.; Xu, J.; Fu, Y.; Guo, Q.-X.
Tetrahedron Lett. 2012, 53, 2769. (b) Weng, Z.; Li, H.; He, W.; Yao, L.-
F.; Tan, J.; Chen, J.; Yuan, Y.; Huang, K.-W. Tetrahedron 2012, 68, 2527.
(c) Wang, X.; Lin, J.; Zhang, C.; Xiao, J.; Zheng, X. Chin. J. Chem. 2013,
31, 915. (d) Serizawa, H.; Aikawa, K.; Mikami, K. Chem.Eur. J. 2013,
19, 17692. (e) Tresse, C.; Guissart, C.; Schweizer, S.; Bouhoute, Y.;
Chany, A.-C.; Goddard, M.-L.; Blanchard, N.; Evano, G. Adv. Synth.
Catal. 2014, 356, 2051. (f) Dubbaka, S. R.; Nizalapur, S.; Atthunuri, A.
R.; Salla, M.; Mathew, T. Tetrahedron 2014, 70, 2118. (g) Deng, X.; Lin,
J.; Zheng, J.; Xiao, J. Chin. J. Chem. 2014, 32, 689.
(18) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2011, 50, 3793.
(19) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A. Organometallics 2008,
27, 6233.
(20) These diamagnetic CF3Cu(I) and CF3Cu(III) complexes are
NMR-observable evidently due to a lack of fast exchange between them
and paramagnetic Cu(II) species in the system.
(21) Wyss, C. M.; Tate, B. K.; Bacsa, J.; Gray, T. G.; Sadighi, J. P.
Angew. Chem., Int. Ed. 2013, 52, 12920.
(22) (a) The disproportionation in our system is not driven by an
irreversible process such as the intramolecular aromatic cupration in the
formation of Cu(I) and Cu(III) from Cu(II) and a macrocyclic arene
ligand.9g,22b−e (b) Ribas, X.; Jackson, D. A.; Donnadieu, B.; Mahía, J.;
Parella, T.; Xifra, R.; Hedman, B.; Hodgson, K. O.; Llobet, A.; Stack, T.
D. P. Angew. Chem., Int. Ed. 2002, 41, 2991. (c) Xifra, R.; Ribas, X.;
(6) Jover, J.; Maseras, F. Chem. Commun. 2013, 49, 10486.
(7) For selected reviews, see: (a) Burton, D. J.; Yang, Z. Y. Tetrahedron
1992, 48, 189. (b) McClinton, M. A.; McClinton, D. A. Tetrahedron
1992, 48, 6555. (c) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
(d) Roy, S.; Gregg, B. T.; Gribble, G. W.; Le, V.-D.; Roy, S. Tetrahedron
2011, 67, 2161. (e) Qing, F.-L.; Zheng, F. Synlett 2011, 1052.
(f) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(g) Jin, Z.; Hammond, G. B.; Xu, B. Aldrichimica Acta 2012, 45, 67.
(h) Chen, P.; Liu, G. Synthesis 2013, 45, 2919. (i) Landelle, G.;
Panossian, A.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. Beilstein J. Org.
Chem. 2013, 9, 2476.
̀
Llobet, A.; Poater, A.; Duran, M.; Sola, M.; Stack, T. D. P.; Benet-
Buchholz, J.; Donnadieu, B.; Mahía, J.; Parella, T. Chem.Eur. J. 2005,
11, 5146. (d) King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas,
X.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12068. (e) Casitas, A.; King,
A. E.; Parella, T.; Costas, M.; Stahl, S. S.; Ribas, X. Chem. Sci. 2010, 1,
326.
(23) Konovalov, A. I.; Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc.
2014, 136, 13410.
(24) We have developed an efficient protocol for oxidative
trifluoromethylation of a broad variety of arylboronic acids and
1-alkynes with 1-TMSCF3. These results will be reported separately.
(8) (a) Chan, D. M. T.; Monaco, K. L.; Wang, R. P.; Winters, M. P.
Tetrahedron Lett. 1998, 39, 2933. (b) Evans, D. A.; Katz, J. L.; West, T. R.
Tetrahedron Lett. 1998, 39, 2937. (c) Lam, P. Y. S.; Clark, C. G.; Saubern,
D
dx.doi.org/10.1021/ja5103508 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX