48
K. Benda et al. / Tetrahedron Letters 52 (2011) 46–48
References and notes
S
S
S
R3
Si
R3
Me2PhSi
R4
NH
(c)
S
1. Reviews: (a) Tidwell, T. T. Ketenes, 2nd ed.; Wiley: Hoboken, NJ, 2006. pp 342–
361; (b) Pons, J.-M.; Kocienski, P. J. In Science of Synthesis; Fleming, I., Ed.;
Thieme: Stuttgart, Germany, 2002; Vol. 4, pp 657–668; (c) George, D. M.;
Danheiser, R. L. In Science of Synthesis in India; Danheiser, R. L., Ed.; Thieme:
Stuttgart, Germany, 2006; Vol. 23, pp 53–99; (d) Pommier, A.; Kocienski, P.;
Pons, J.-M. J. Chem. Soc., Perkin Trans. 1 1998, 2105–2118.
2. Loebach, J. L.; Bennett, D. M.; Danheiser, R. L. J. Org. Chem. 1998, 63, 8380–8389.
3. Bennett, D. M.; Okamoto, I.; Danheiser, R. L. Org. Lett. 1999, 1, 641–644.
4. Austin, W. F.; Zhang, Y.; Danheiser, R. L. Org. Lett. 2005, 7, 3905–3908.
5. Giese, M. W.; Moser, W. H. Org. Lett. 2008, 10, 4215–4218.
6. Danheiser, R. L.; Sard, H. J. Org. Chem. 1980, 45, 4810–4812.
7. Moser, W. H.; Sun, L.; Huffman, J. C. Org. Lett. 2001, 3, 3389–3391.
8. Li, Z.; Moser, W. H.; Zhang, W.; Hua, C.; Sun, L. J. Organomet. Chem. 2008, 693,
361–367.
9. Moore, H. W.; Yerxa, B. R. Chemtracts 1992, 5, 273–313; Adv. Strain Org. Chem.
1995, 4, 81–162.
10. Liebeskind, L. S. Tetrahedron 1989, 45, 3053–3060.
11. Reed, M. W.; Pollart, D. J.; Perri, S. T.; Foland, L. D.; Moore, H. W. J. Org. Chem.
1988, 53, 2477–2482.
12. Gayo, L. M.; Winters, M. P.; Moore, H. W. J. Org. Chem. 1992, 57, 6896–6899.
13. Liebeskind, L. S.; Fengl, R. W.; Wirtz, K. R.; Shawe, T. T. J. Org. Chem. 1988, 53,
2482–2488.
Ph
Me
Me
14c
O
O
or
d
: R3 = Me, R4= Ph (35%)
b: R3 = Me, R4 = CH=ChPh (18%)
19a
(b)
: R3 = R4 = Ph (16%)
c
(a)
d: R3 = Ph, R4 = CH=CHPh (53%)
S
S
CN
CN
CN
CN
R3
Me2PhSi
S
NO2
Ph
S
Me2PhSi
N
O
O
Me
17a: R3 = Me (99%)
: R3 = Ph (55%)
b
18
14. Oppermann, G.; Stranberg, M.; Moore, H. W.; Schaumann, E.; Adiwijaja, G.
Synthesis 2010, 2027–2038.
(40%)
15. Sekiguchi, A.; Lee, V. Y.; Nanjo, M. Coord. Chem. Rev. 2000, 210, 11–45.
16. Cyclobutenone 11a, Typical Procedure: Me2PhSiLi (70 mL, 0.5 M in THF,
35.0 mmol) was added dropwise to 7 (R1 = Me; 4.886 g, 34.4 mmol) in dry
THF (500 mL) at ꢀ78 °C. After 20 min, TFAA (5.5 mL, 34.4 mmol) was added
and after another 20 min dry MeOH (40 mL). The mixture was allowed to
warm to rt over 30 min with stirring and aq NaHCO3 (20%, 250 mL) added. The
product was extracted with ether (2 ꢁ 250 mL), the ethereal solution washed
with brine (2 ꢁ 150 mL), dried (MgSO4) and concentrated in vacuo. Purification
by flash chromatography (SiO2, petroleum ether/EtOAc = 101) yielded
cyclobutenone 11a (8.212 g, 46%). Yellow oil; 1H NMR (400 MHz, CDCl3):
d = 7.56 (m, 2H), 7.38 (m, 3H), 3.95 (s, 3H), 3.53 (s, 6H), 0.42 (s, 6H). 13C NMR
(100 MHz, CDCl3): d = 193.5, 192.1, 136.9, 133.7, 131.5, 129.5, 128.0, 115.0,
Scheme 7. Formal Diels–Alder reactions of silylketene precursors 14. Reagents and
conditions: (a) TCNE, toluene, 110 °C, 12 h (for 14c,d); (b) N-methyl-4-nitrobenz-
aldimine, toluene, 110 °C, 24 h (for 14d); (c) TMS–N@CH–Ph or TMS–N@CH–
CH@CH–Ph, cat. Zn(Otf)2, THF, rt, 24 h (for 14c,d); aq work-up.
we had little success with olefinic reaction partners. Only tetracy-
anoethylene gives a smooth reaction with thioacetals 14c,d, but no
cycloadduct 17 with 3-methoxy-cyclobutenone 14a (Scheme 7).
The alternative 2-alkenyl-cyclobutanone structure for 17 can be
ruled out because of a carbonyl vibration at relatively low wave-
60.2, 53.5, ꢀ2.5 ppm. IR (film):
m
= 1750 cmꢀ1. HRMS (ESI): [M+Na]+ found
315.1023, calcd 315.1023.
number around 1700 cmꢀ1
.
17. Schaumann, E.; Winter-Extra, S.; Rühter, G. J. Org. Chem. 1990, 55, 4200–4202.
18. Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synlett 1999, 319–320.
[2 + 2] Cycloadditions of cyclobutenones 14 with C@N systems
turned out to be more successful. In particular, 14d undergoes a
smooth reaction with N-methyl-4-nitrobenzaldimine to give b-lac-
tam 18 in two diasteromeric forms with a characteristic carbonyl
absorption at 1740 cmꢀ1 (Scheme 7). Under the reaction condi-
tions, ketene 15a from cyclobutenone 14a apparently decomposes
and 14c/15c gives no reaction. In contrast, N-silyl-imines and sily-
lketene precursors 14c,d give d-lactams 19a–d,26 but to obtain the
indicated yields of 16–72% catalysis by zinc triflate is required; the
aqueous work-up leads to N-desilylation.
19. Regenhardt, W.; Schaumann, E.; Moore, H. W. Synthesis 2001, 1076–1080.
20. Selected data of compounds: Ketene 15b: slightly yellow liquid. 1H NMR
(400 MHz, CDCl3 = 7.26): d = 7.60 (m, 2H), 7.39 (m, 1H), 7.29–7.17 (m, 3H),
3.38 (m, 4H, SCH2), 1.77 (s, 3H), 0.49 (s, 6H). 13C NMR (125 MHz, CDCl3 = 77.4):
d = 198.6, 137.1, 133.8, 129.6, 85.3, 38.8, 38.1, 24.8, 0.9, ꢀ1.6. IR (film):
m
= 2958, 2086, 1589, 1428, 1252, 1115, 982, 813, 734, 701 cmꢀ1. HRMS (EI):
[M]+ found 306.0569, calcd 306.0568.
21. Loebach, J. L.; Bennett, D. M.; Danheiser, R. L. J. Am. Chem. Soc. 1998, 120, 9690–
9691.
22. Davie, C. P.; Danheiser, R. L. Angew. Chem. 2005, 117, 6017–6020; Angew. Chem.,
Int. Ed. 2005, 44, 5867–5870.
23. Li, Z.; Moser, W. H.; Deng, R.; Sun, L. J. Org. Chem. 2007, 72, 10254–10257.
24. Presented in part at the 21st International Symposium on the Organic
Chemistry of Sulfur (ISOCS XXI), Madrid, Spain, Jul 4, 2004; cf. Benda, K.;
Schaumann, E. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 1463–1464.
25. Cyclopentenone 16a: waxy solid, mp 74 °C. 1H NMR (200 MHz, CDCl3 = 7.26):
d = 7.37 (m, 1H), 7.21 (m, 4H), 3.47 (s, 3H), 3.28 (s, 3H), 3.14 (s, 3H), 2.41 (s, 1H),
0.06 (s, 3H), 0.04 (s, 3H), 0.00 (s, 9H). 13C NMR (125 MHz, CDCl3 = 77.4):
d = 206.7, 188.8, 140.6, 134.5, 130.0, 128.9, 116.0, 107.9, 62.4, 52.4, 52.3, 51.1,
3. Conclusion
The addition/substitution method (Scheme 2) offers convenient
access to silylcyclobutenones. Acetals 11 show no spontaneous
electrocyclic ring opening to silylketenes 12, but the ketene species
is apparently formed on heating with silyldiazomethane and
trapped to give cyclopentenones 16a–d. Thioacetals 14a–d are in
equilibrium with silylketenes 15, which can be trapped to 16–19,
but decomposition of 15 sometimes interferes.
0.1, 0.0. IR (film):
m = 2950, 2899, 2834, 1678, 1619, 1458, 1428, 1308, 1246,
1147, 1110, 1045, 970, 841, 816, 777, 734, 701, 650 cmꢀ1. HRMS (TOF-MS ES):
[M+Na]+ found 401.1591, calcd 401.1584.
26. d-Lactam 19c: colorless crystals, mp 205 °C. 1H NMR (200 MHz, CDCl3 = 7.26):
d = 7.91 (m, 2H), 7.56 (m, 2H), 7.24 (m, 11H), 6.42 (br s, 1H), 5.29 (s, 1H), 2.97
(m, 4H), 0.45 (s, 3H), 0.16 (s, 3H). 13C NMR (125 MHz, CDCl3 = 77.4): d = 177.4,
139.3, 137.0, 136.9, 133.0, 130.5, 129.5, 129.7, 129.5, 128.9, 128.5, 67.7, 48.2,
39.2, 38.4, 1.5, 0.0. IR (KBr):
m = 3166, 3056, 1676, 1491, 1445, 1427, 1374,
1348, 1303, 1246, 1111, 1018, 835, 818, 775, 730, 701, 652, 610, 544 cmꢀ1
HRMS (TOF-MS ES): [M+Na]+ found 496.1207, calcd 496.1201.
.
Acknowledgments
Support of our work by the Fonds der Chemischen Industrie,
Frankfurt, and the U.S. National Institutes of Health (GM 28273
to R.L.D.) is gratefully acknowledged.