Shopsowitz et al.
JOCArticle
SCHEME 1. Synthesis of Macrocycles 4
and pharmaceuticals.9 Typically, the dinitroaryl compounds
1 are readily prepared by the nitration of 1,2-dialkoxyben-
zene derivatives in concentrated nitric acid, which almost
exclusively yields the desired 4,5-dinitro product.10 While
this has been extremely beneficial to our study of Schiff base
macrocycles, we have previously been unable to find an
adequate explanation for this surprising regioselectivity.
Like their 1,2-dialkoxy counterparts, 1,4-dialkoxy-2,3-
dinitrobenzene derivatives 5 are another class of compounds
that are useful precursors for many different molecules,
potentially including new Schiff base macrocycles. From
the basic rules for electrophilic aromatic substitution, one
would predict that the dinitration of 1,4-dimethoxybenzene
(8a) would give primarily the 2,6-dinitro isomer 9 (favorable
from the o,p-directing methoxy groups and the m-directing
ability of the nitro group), with the 2,3-dinitro isomer being
the least favored due to sterics; Scheme 3 shows the possible
dinitration products. To our surprise, we found in the litera-
ture that nitration of 1,4-dimethoxybenzene yields only the
2,3-dinitro and 2,5-dinitro isomers 5a and 10a. Furthermore
the relative amounts of 5a and 10a reported vary significantly
from study to study depending on the conditions used.11 Others
have also expressed surprise at the regioselectivity of this
reaction,12 but we have been unable to find a good explanation
for this result.
(2) For recent examples, see: (a) Akine, S.; Taniguchi, T.; Nabeshima, T.
Tetrahedron Lett. 2001, 42, 8861–8864. (b) Gao, J.; Zingaro, R. A.; Reibenspies,
J. H.; Martell, A. E. Org. Lett. 2004, 6, 2453–2455. (c) Gawronski, J.; Kwit, M.;
Grajewski, J.; Gajewy, J.; Dlugokinska, A. Tetrahedron: Asymmetry 2007, 18,
2632–2637. (d) Korich, A. L.; Hughes, T. S. Org. Lett. 2008, 10, 5405–5408.
(e) Kwit, M.; Zabicka, B.; Gawronski, J. Dalton Trans. 2009, 6783–6789.
(f) Frischmann, P. D.; Jiang, J.; Hui, J. K.-H.; Grzybowski, J. J.; MacLachlan,
M. J. Org. Lett. 2008, 10, 1255–1258. (g) de Geest, D. J.; Noble, A.; Murray,
K. S.;Larsena,D. S.;Brooker, S. DaltonTrans.2007, 467–475. (h) Hui, J. K.-H.;
MacLachlan, M. J. Chem. Commun. 2006, 2480–2482. (i) Givaja, G.; Volpe, M.;
€
Edward, M. A.; Blake, A. J.; Wilson, C.; Schroder, M.; Love, J. B. Angew.
Chem., Int. Ed. 2007, 46, 584–586. (j) Love, J. B. Chem. Commun. 2009, 3154–
3165. (k) Shimakoshi, H.; Takemoto, H.; Aritome, I.; Hisaeda, Y. Tetrahedron
Lett. 2002, 43, 4809–4812.
(3) (a) Mastalerz, M. Chem. Commun. 2008, 4756–4758. (b) Liu, X.; Liu,
Y.; Li, G.; Warmuth, R. Angew. Chem., Int. Ed. 2006, 45, 901–904. (c) Ic-li, B.;
€
€
Christinat, N.; Tonnemann, J.; Schuttler, C.; Scopelliti, R.; Severin, K. J.
Am. Chem. Soc. 2009, 131, 3154–3155. (d) Sanmartın, J.; Bermejo, M. R.;
a-Deibe, A. M.; Rivas, I. M.; Fernandez, A. R. J. Chem. Soc., Dalton
´
ꢁ
Garcı
´
Trans. 2000, 4174–4181. (e) Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.;
Klock, C.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 4570–
4571. (f) Tozawa, T.; et al. Nat. Mater. 2009, 8, 973–978. (g) Nitschke, J. R.;
ꢁ
Schultz, D.; Bernardinelli, G.; Gerard, D. J. Am. Chem. Soc. 2004, 126,
16583–16543. (h) Nitschke, J. R.; Lehn, J.-M. Proc. Natl. Acad. Sci. U. S. A.
2003, 100, 11970–11974. (i) Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu,
S.-H.; Cave, G. W. V.; Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308–
1312.
(4) Gallant, A. J.; Hui, J. K.-H.; Zahariev, F. E.; Wang, Y. A.; MacLachlan,
M. J. J. Org. Chem. 2005, 70, 7936–7946.
(5) (a) Gallant, A. J.; Chong, J. H.; MacLachlan, M. J. Inorg. Chem.
2006, 45, 5248–5250. (b) Frischmann, P. D.; Gallant, A. J.; Chong, J. H.;
MacLachlan, M. J. Inorg. Chem. 2008, 47, 101–112. (c) Frischmann, P. D.;
MacLachlan, M. J. Chem. Commun. 2007, 4480–4482. (d) Nabeshima, T.;
Miyazaki, H.; Iwasaki, A.; Akine, S.; Saiki, T.; Ikeda, C.; Sato, S. Chem. Lett.
2006, 35, 1070–1071. (e) Frischmann, P. D.; Facey, G. A.; Ghi, P. Y.;
Gallant, A. J.; Bryce, D. L.; Lelj, F.; MacLachlan, M. J. J. Am. Chem.
Soc. 2010, 132, 3893–3908.
(8) (a) Helgesen, M.; Gevorgyan, S. A.; Krebs, F. C.; Janssen, R. A. J.
Chem. Mater. 2009, 21, 4669–4675. (b) Bouffard, J.; Swager, T. M. Macro-
molecules 2008, 41, 5559–5562. (c) Gautrot, J. E.; Hodge, P. Polymer 2007,
48, 7065–7077. (d) Wang, P.; Zhu, P.; Wu, W.; Kang, H.; Ye, C. Phys. Chem.
Chem. Phys. 1999, 1, 3519–3525.
(9) (a) Pettit, G. R.; Thornhill, A. J.; Moser, B. R.; Hogan, F. J. Nat. Prod.
2008, 71, 1561–1563. (b) He, W.; Myers, M. R.; Hanney, B.; Spada, A. P.;
Bilder, G.; Galzcinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi, Z.;
Perrone, M. H. Bioorg. Med. Chem. Lett. 2003, 13, 3097–3100. (c) Armer,
R. E.; Barlow, J. S.; Dutton, C. J.; Greenway, D. H. J.; Greenwood, S. D. W.;
Lad, N.; Tommasini, I. Bioorg. Med. Chem. Lett. 1997, 7, 2585–2588.
(10) (a) Leung, A. C. W.; MacLachlan, M. J. J. Mater. Chem. 2007, 23,
1923–1932. (b) Nose, M.; Suzuki, H. Synthesis 2000, 1539–1542. (c) Ehrlich,
J.; Bogert, M. T. J. Org. Chem. 1947, 12, 522–534. (d) Drake, N. L.; Anspon,
H. D.; Draper, J. D.; Haywood, S. T.; Van Hook, J.; Melamed, S.; Peck,
R. M.; Sterling, J., Jr.; Walton, E. W.; Whiton, A. J. Am. Chem. Soc. 1946,
68, 1536–1543. (e) Baker, M. V.; Brown, D. H.; Heath, C. H.; Skelton, B. W.;
White, A. H.; Williams, C. C. J. Org. Chem. 2008, 73, 9340–9352. (f) Antonisse,
M. M. G.; Snellink-Rueel, B. H. M.; Yigit, I.; Engbersen, J. F. J.; Reinhoudt,
D. N. J. Org. Chem. 1997, 62, 9034–9038.
(6) (a) Gallant, A. J.; MacLachlan, M. J. Angew. Chem., Int. Ed. 2003, 42,
5307–5310. (b) Hui, J. K.-H.; Frischmann, P. D.; Tso, C.-H.; Michal, C. A.;
MacLachlan, M. J. Chem.;Eur. J. 2010, 16, 2453–2460.
(7) (a) Voisin, E.; Foster, E. J.; Rakotomalala, M.; Williams, V. E. Chem.
Mater. 2009, 21, 3251–3261. (b) Glebowska, A.; Kamienska-Trela, K.;
Krowczynski, A.; Pociecha, D.; Szydlowska, J.; Szczytko, J.; Twardowski,
A.; Wojcik, J.; Gorecka, E. J. Mater. Chem. 2008, 18, 3419–3421. (c) Grolik,
J.; Sieron, L.; Eilmes, J. Tetrahedron Lett. 2006, 47, 8209–8213. (d) Szydlowska,
J.; Krowczynski, A.; Bilewicz, R.; Pociecha, D.; Glaz, L. J. Mater. Chem. 2008,
18, 1108–1115. (e) Durmus, M.; Dincer, F.; Ahsen, V. Dyes Pigm. 2008, 77,
402–407. (f) Hu, J.; Zhang, D.; Jin, S.; Cheng, S. Z. D.; Harris, F. W. Chem.
Mater. 2004, 16, 4912–4915. (g) Sessler, J. L.; Callaway, W. B.; Dudek, S. P.;
Date, R. W.; Bruce, D. W. Inorg. Chem. 2004, 43, 6650–6653. (h) Ong, C. W.;
Liao, S.-C.; Chang, T. H.; Hsu, H.-F. J. Org. Chem. 2004, 69, 3181–3185.
(i) Forget, S.; Veber, M.; Strzelecka, H. Mol. Cryst. Liq. Cryst. Sci. Technol.,
Sect. A: Mol. Cryst. Liq. Cryst. 1995, 258, 263–267.
(11) (a) Besset, T.; Morin, C. Synthesis 2009, 1753–1756. (b) Taleb, A.;
Alvarez, F.; Nebois, P.; Walschofer, N. Heterocycl. Commun. 2006, 12, 111–
114. (c) Fisher, G. H.; Moreno, H. R.; Oatis, J. E., Jr.; Schultz, H. P. J. Med.
Chem. 1975, 18, 746–752. (d) Nose, M.; Suzuki, H. Synthesis 2000, 1539–
1542. (e) Mascal, M.; Yin, L.; Edwards, R.; Jarosh, M. J. Org. Chem. 2008,
73, 6148–6151.
(12) Dwyer, C. L.; Holzapfel, C. W. Tetrahedron 1998, 54, 7843–7848.
1286 J. Org. Chem. Vol. 76, No. 5, 2011