464
R. Dey et al. / Tetrahedron Letters 52 (2011) 461–464
8. (a) Azad, U. P.; Ganesan, V. Chem. Commun. 2010, 6156–6158; (b) Wang, P.;
3-p-Tolyl-1H-cinnolin-4-one (Table 1, entry 2): Yield 90%, pale yellow solid, IR
(KBr) 667, 754, 821, 1301, 1477, 1545, 2841, 2887 cmÀ1 1H NMR (DMSO-d6,
Wang, X.; Bi, L.; Zhu, G. Analyst 2000, 125, 1291–1294; (c) Qui, Y.; Deng, H.;
Mou, J.; Yang, S.; Zeller, M.; Batten, S. R.; Wu, H.; Li, J. Chem. Commun. 2009,
5415–5417.
;
500 MHz) d 2.33 (S, 3H), 7.23 (d, J = 8 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.61 (d,
J = 8 Hz, 1H), 7.77 (t, J = 7.5 Hz, 1H), 7.99 (d, J = 8 Hz, 2H), 8.13 (d, J = 8 Hz, 1H),
13.62 (s, 1H); 13C NMR (DMSO-d6, 125 MHz) d 21.4, 116.9, 123.8, 125.2, 128.6
(2C), 128.9 (2C), 132.6, 134.0, 138.3, 141.2, 145.9, 169.7; HRMS Calcd for
9. (a) Xiao, N.; Yu, C. Anal. Chem. 2010, 82, 3659–3663; (b) Daniel, W. L.; Han, M.
S.; Lee, J.-S.; Mirkin, C. A. J. Am. Chem. Soc. 2009, 131, 6362–6363.
10. (a) Lee, K.-S.; Kim, H.-J.; Kim, G.-H.; Shin, I.; Hong, J.-I. Org. Lett. 2008, 10, 49–
51; (b) Bhalla, V.; Singh, H.; Kumar, M. Org. Lett. 2010, 12, 628–631.
11. General procedure for the detection of nitrite ions: An aqueous nitrite solution
(10À4 M, 2 mL) was added to an aqueous HCl (4 N) solution of 2-phenylethynyl
aniline (2 mL, 0.5 Â 10À4 M) in a cubet and shaken well. UV study was carried
out with this solution. For fluorescence studies a similar experiment was
performed using a 10À6 M solution (2 mL) of 6-methoxynaphthyl-2-ethynyl
aniline.
C
15H13N2O (M++H): 237.101. Found: 237.101.
7-Chloro-3-p-tolyl-1H-cinnolin-4-one (Table 1, entry 4): Yield 92%; pale yellow
solid; IR (KBr) 819, 1051, 1454, 1537, 1560, 2825, 2885, 2982, 3051 cmÀ1 1H
NMR (DMSO-d6, 500 MHz) 2.32 (s, 3H), 7.22 (d, J = 8 Hz, 2H), 7.40 (d,
;
d
J = 8.5 Hz, 1H), 7.65 (s, 1H), 7.96 (d, J = 8 Hz, 2H), 8.11 (d, J = 8.5 Hz, 1H), 13.74
(s, 1H); 13C NMR (DMSO-d6, 125 MHz) d 116.0, 122.3, 125.6, 127.8, 128.7 (2C),
129.0 (3C), 132.2, 138.6, 141.8, 146.5, 169.3; HRMS Calcd for C15H12ClN2O
(M++H): 271.0638. Found: 271.0633.
12. Lewgowd, W.; Stanczak, A. Arch. Pharm. Chem. Life Sci. 2007, 340, 65–80.
13. (a) Schofield, K.; Swain, T. J. Chem. Soc. 1949, 2393–2399; (b) Schofield, K.;
Simpson, J. C. E. J. Chem. Soc. 1945, 512–520; (c) Kiselyov, A.-S.; Dominguez, C.
Tetrahedron Lett. 1999, 40, 5111–5114; (d) Brase, S.; Dahmen, S.; Heuts, J.
Tetrahedron Lett. 1999, 40, 6201–6203; (e) Vinogradova, O. V.; Sorokoumov, V.
N.; Vasileusky, S. F.; Balova, I. A. Tetrahedron Lett. 2007, 48, 4907–4909.
14. Matsubara, Y.; Matsuda, T.; Kato, A.; Yamaguchi, Y.; Yoshida, Z. I. Tetrahedron
Lett. 2000, 41, 7901–7904.
3-(4-Chloro-phenyl)-4-oxo-1,4-dihydro-cinnoline-6-carbonitrile (Table 1, entry
5): Yield 95%; pale yellow solid; IR (KBr) 823, 1091, 1300, 1487, 1585, 2231,
3027, 3277 cmÀ1 1H NMR (DMSO-d6, 500 MHz) d 7.37 (d, J = 8.5 Hz, 2H), 7.68
;
(d, J = 8.5 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 8.0 (d, J = 8 Hz, 2H), 8.3 (s, 1H), 14.1 (s,
1H), 13C NMR (DMSO-d6, 125 MHz) d 107.4, 118.8, 123.1, 128.5 (3C), 130.4 (2C),
131.5, 133.4, 134.2, 135.3, 142.6, 145.9, 168.8; HRMS Calcd for C15H9ClN3O
(M++H): 282.0434. Found: 282.0429.
3-(2-Methoxynaphthalen-6-yl)cinnolin-4(1H)-one (Table 1, entry 7): Yield 90%;
15. General experimental procedure: representative procedure for the synthesis of 3-
phenyl-1H-cinnolin-4-one: To 2 N acidic suspension (2 mL) of 2-phenylethynyl-
phenylamine (193 mg, 1 mmol), NaNO2 (103 mg, 1.5 mmol) was added in
portions at 0–5 °C. The reaction mixture was stirred at 0–5 °C for 5 min
followed by further 5 min at room temperature. The reaction mixture was
extracted with EtOAc (2 Â 5 mL), dried, concentrated and was left at room
pale yellow solid; IR (KBr) 727, 871, 1201, 1481, 1612, 1629, 3198, 3223 cmÀ1
;
1H NMR (DMSO-d6, 500 MHz) d 3.93 (S, 3H), 7.26 (d, J = 9 Hz, 1H), 7.36 (t,
J = 7.5 Hz, 1H), 7.43 (S, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.74 (d, J = 7.5 Hz, 1H), 7.96
(d, J = 8.5 Hz, 1H), 8.04 (d, J = 9 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.33 (d, J = 8 Hz,
1H), 8.94 (S, 1H), 14.00 (S, 1H), 13C NMR (DMSO-d6, 125 MHz) d 55.3, 106.0,
110.9, 119.3, 121.9, 123.0, 123.3, 126.3, 126.6, 127.0, 127.2, 131.2, 132.0, 132.7,
temperature to give 3-phenyl-1H-cinnolin-4-one as
a
pale yellow solid
1H NMR
136.6, 140.7, 142.4, 159.2, 187.5; HRMS Calcd for
325.0953. Found: 325.0954.
C
19H14N2O2 (M++Na):
(204 mg, 92%), IR (KBr) 756, 1305, 1477, 1546, 2860, 2929 cmÀ1
;
(DMSO-d6, 300 MHz) d 7.36–7.46 (m, 4H), 7.63 (d, J = 8.4 Hz, 1H), 7.77 (t,
J = 7 Hz, 1H), 8.09–8.17 (m, 3H), 13.70 (s, 1H); 13C NMR (DMSO-d6, 75 MHz) d
117.0, 124.0, 125.2, 125.3, 128.4 (2C), 128.8 (2C), 134.1, 135.5, 141.3, 146.0,
169.8; HRMS Calcd for C14H10N2O (M++H): 223.0871. Found: 223.0868.
This procedure was followed for all the reactions listed in Table 1. The products
in entries 3 and 6 of Table 1 are known14 and were identified by comparison of
their spectra with those reported. The products in entries 2, 4, 5, 7 and 8 in
7-Chloro-3-(4-methoxy-phenyl)-1H-cinnolin-4-one (Table 1, entry 8): Yield 92%;
pale yellow solid; IR (KBr) 827, 1055, 1300, 1556, 2885, 3054 cmÀ1 1H NMR
;
(DMSO-d6, 500 MHz) d 3.7 (s, 3H), 7.0 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 7.5 Hz, 1H),
7.48 (s, 1H), 7.98 (d, J = 8 Hz, 1H), 8.18 (d, J = 8.5 Hz, 2H), 13.90 (s, 1H); 13C NMR
(DMSO-d6, 125 MHz) d 55.56, 112.3, 113.9 (2C), 120.7, 121.2, 121.7, 124.1,
128.8, 131.7 (3C), 134.0, 142.8, 161.0; HRMS Calcd for C15H12ClN2O2 (M++H):
287.0587. Found: 287.0583.
Table
1
were not reported earlier and were characterized by their
16. Bhattacharya, S.; Sengupta, S. Tetrahedron Lett. 2004, 45, 8733–8736.
17. Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine,
H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M. Green Chem. 2008, 10,
31–36.
spectroscopic data (IR, 1H NMR, 13C NMR and HRMS) which are provided
below in order of their entries.
In general, these cinnolones are very high melting (300 °C) and attempts to
determine the melting points on an electrical bath leads to decomposition.