Journal of the American Chemical Society
Page 10 of 11
Theory Studies on the Mechanism of the Reduction of CO2 to CO
Macromolecules 2010, 43, 6562−6569. (d) Lennox, A. J. J.; Lloyd-Jones,
Catalyzed by Copper(I) Boryl Complexes. J. Am. Chem. Soc. 2006, 128,
15637−15643. (c) Ojha, D. P.; Gadde, K.; Prabhu, K. R. Generation of
Hydrogen from Water: A Pd-Catalyzed Reduction of Water Using
Diboron Reagent at Ambient Conditions. Org. Lett. 2016, 18,
5062−5065. (d) Flinker, M.; Yin, H.; Juhl, R. W.; Eikeland, E. Z.;
Overgaard, J.; Nielsen, D. U.; Skrydstrup, T. Efficient Water Reduction
with sp3-sp3 Diboron(4) Compounds: Application to Hydrogenations,
H-D Exchange Reactions, and Carbonyl Reductions. Angew. Chem., Int.
Ed. 2017, 56, 15910−15915. (e) Wei, Y.; Zhao, C.; Xuan, Q.; Song, Q. An
Expedient and Novel Strategy for Reductive Amination by Employing
H2O as Both a Hydrogen Source and Solvent via B2(OH)4/H2O Systems.
Org. Chem. Front. 2017, 4, 2291−2295. (f) Xuan, Q.; Zhao, C.; Song, Q.
G. C. Selection of Boron Reagents for Suzuki-Miyaura Coupling. Chem.
Soc. Rev. 2014, 43, 412−443. (e) Zhang, L.; Lovinger, G. J.; Edelstein, E.
K.; Szymaniak, A. A.; Chierchia, M. P.; Morken, J. P. Catalytic
Conjunctive Cross-Coupling Enabled by Metal-Induced Metallate
Rearrangement. Science 2016, 351, 70−74. (f) Kischkewitz, M.;
Okamoto, K.; Mück-Lichtenfeld, C.; Studer, A. Radical-Polar Crossover
Reactions of Vinylboron ate Complexes. Science 2017, 355, 936−938.
(g) Silvi, M.; Sandford, C.; Aggarwal, V. K. Merging Photoredox with
1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl
Boronate Complexes. J. Am. Chem. Soc. 2017, 139, 5736−5739. (h)
Namirembe, S.; Morken, J. P. Reactions of Organoboron Compounds
Enabled by Catalyst-Promoted Metalate Shifts. Chem. Soc. Rev. 2019,
48, 3464−3474.
(15) For selected examples, see: (a) Jang, H.; Zhugralin, A. R.; Lee, Y.;
Hoveyda, A. H. Highly Selective Methods for Synthesis of Internal (α-)
vinylboronates through Efficient NHC-Cu-Catalyzed Hydroboration of
Terminal Alkynes. Utility in Chemical Synthesis and Mechanistic Basis
for Selectivity. J. Am. Chem. Soc. 2011, 133, 7859−7871. (b) Ho, H. E.;
Asao, N.; Yamamoto, Y.; Jin, T. Carboxylic Acid-Catalyzed Highly
Efficient and Selective Hydroboration of Alkynes with Pinacolborane.
Org. Lett. 2014, 16, 4670−4673. (c) Obligacion, J. V.; Neely, J. M.;
Yazdani, A. N.; Pappas, I.; Chirik, P. J. Cobalt Catalyzed Z-Selective
Hydroboration of Terminal Alkynes and Elucidation of the Origin of
Selectivity. J. Am. Chem. Soc. 2015, 137, 5855−5858. (d) Yang, Z.;
Zhong, M.; Ma, X.; Nijesh, K.; De, S.; Parameswaran, P.; Roesky, H. W.
An Aluminum Dihydride Working as a Catalyst in Hydroboration and
Dehydrocoupling. J. Am. Chem. Soc. 2016, 138, 2548−2551. (e) Guo, J.;
Cheng, B.; Shen, X.; Lu, Z. Cobalt-Catalyzed Asymmetric Sequential
Hydroboration/Hydrogenation of Internal Alkynes. J. Am. Chem. Soc.
2017, 139, 15316−15319. (f) Yamamoto, K.; Mohara, Y.; Mutoh, Y.;
Saito, S. Ruthenium-Catalyzed (Z)-Selective Hydroboration of
Terminal Alkynes with Naphthalene-1,8-diaminatoborane. J. Am.
Chem. Soc. 2019, 141, 17042−17047.
(16) For selected examples, see: (a) Selander, N.; Willy, B.; Szabó, K.
J. Selective C-H Borylation of Alkenes by Palladium Pincer Complex
Catalyzed Oxidative Functionalization. Angew. Chem., Int. Ed. 2010, 49,
4051−4053. (b) Takaya, J.; Kirai, N.; Iwasawa, N. Efficient Synthesis of
Diborylalkenes from Alkenes and Diboron by a New PSiP-Pincer
Palladium-Catalyzed Dehydrogenative Borylation. J. Am. Chem. Soc.
2011, 133, 12980−12983. (c) Wang, C.; Wu, C.; Ge, S. Iron-Catalyzed E-
Selective Dehydrogenative Borylation of Vinylarenes with
Pinacolborane. ACS Catal. 2016, 6, 7585−7589. (d) Wen, H.; Zhang, L.;
Zhu, S.; Liu, G.; Huang, Z. Stereoselective Synthesis of Trisubstituted
Alkenes via Cobalt-Catalyzed Double Dehydrogenative Borylations of
1-Alkenes. ACS Catal. 2017, 7, 6419−6425. (e) Shi, X.; Li, S.; Wu, L. H2 -
Acceptorless Dehydrogenative Boration and Transfer Boration of
Alkenes Enabled by Zirconium Catalyst. Angew. Chem., Int. Ed. 2019,
58, 16167−16171.
(17) Liu and Clark have demonstrated the synthesis of
vinylboronates from ketones via enolates and α-hydroxyboronate
esters, respectively. However, the regioselectivity of vinylboronates
obtained by our protocol and the mechanism are different from their
methods. (a) Hu, Y.; Sun, W.; Zhang, T.; Xu, N.; Xu, J.; Lan, Y.; Liu, C.
Stereoselective Synthesis of Trisubstituted Vinylboronates from
Ketone Enolates Triggered by 1,3-Metalate Rearrangement of Lithium
Enolates. Angew. Chem., Int. Ed. 2019, 58, 15813−15818. (b) Guan, W.;
Michael, A. K.; McIntosh, M. L.; Koren-Selfridge, L.; Scott, J. P.; Clark, T.
B. Stereoselective Formation of Trisubstituted Vinyl Boronate Esters
by the Acid-Mediated Elimination of α-Hydroxyboronate Esters. J. Org.
Chem. 2014, 79, 7199−7204.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Umpolung of Protons from H2O:
a Metal-Free Chemoselective
Reduction of Carbonyl Compounds via B2pin2/H2O systems. Org.
Biomol. Chem. 2017, 15, 5140−5144.
(9) (a) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Catalytic Diboration of
Aldehydes via Insertion into the Copper−Boron Bond. J. Am. Chem. Soc.
2006, 128, 11036−11037. (b) McIntosh, M. L.; Moore, C. M.; Clark, T. B.
Copper-Catalyzed Diboration of Ketones: Facile Synthesis of Tertiary
α-Hydroxyboronate Esters. Org. Lett. 2010, 12, 1996−1999. (c)
Molander, G. A.; Wisniewski, S. R. Stereospecific Cross-Coupling of
Secondary
Organotrifluoroborates:
Potassium
1-
(Benzyloxy)alkyltrifluoroborates. J. Am. Chem. Soc. 2012, 134,
16856−16868. (d) Kalläne, S. I.; Braun, T.; Braun, B.; Mebs, S. Versatile
Reactivity of a Rhodium(I) Boryl Complex towards Ketones and
Imines. Dalton Trans. 2014, 43, 6786−6801. (e) Kubota, K.; Yamamoto,
E.; Ito, H. Copper(I)-Catalyzed Enantioselective Nucleophilic
Borylation of Aldehydes: an Efficient Route to Enantiomerically
Enriched α-Alkoxyorganoboronate Esters. J. Am. Chem. Soc. 2015, 137,
420−424. (f) Kubota, K.; Osaki, S.; Jin, M.; Ito, H. Copper(I)-Catalyzed
Enantioselective Nucleophilic Borylation of Aliphatic Ketones:
Synthesis of Enantioenriched Chiral Tertiary α-Hydroxyboronates.
Angew. Chem., Int. Ed. 2017, 56, 6646−6650. (g) Wang, L.; Zhang, T.;
Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. C−O Functionalization of α-
Oxyboronates:
A
Deoxygenative gem-Diborylation and gem-
Silylborylation of Aldehydes and Ketones. J. Am. Chem. Soc. 2017, 139,
5257−5264.
(10) Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z. DFT Studies on the
Mechanism of the Diboration of Aldehydes Catalyzed by Copper(I)
Boryl Complexes. J. Am. Chem. Soc. 2008, 130, 5586−5594.
(11) (a) Yu, J.-Y.; Shimizu, R.; Kuwano, R. Selective cine Substitution
of 1-Arylethenyl Acetates with Arylboron Reagents and
a
Diene/Rhodium Catalyst. Angew. Chem., Int. Ed. 2010, 49, 6396−6399.
(b) Iwasaki, T.; Miyata, Y.; Akimoto, R.; Fujii, Y.; Kuniyasu, H.; Kambe,
N. Diarylrhodates as Promising Active Catalysts for the Arylation of
Vinyl Ethers with Grignard Reagents. J. Am. Chem. Soc. 2014, 136,
9260−9263.
(12) Low conversions and ketone-hydroboration products were
observed when alkyl alkyl ketones such as 4-heptanone were treated
with the standard reaction conditions.
(13) For Rh-catalyzed dehydrogenative borylation: see (a) Coapes,
R. B.; Souza, F. E. S.; Thomas, R. L.; Hall, J. J.; Marder, T. B. Rhodium
Catalysed Dehydrogenative Borylation of Vinylarenes and 1,1-
Disubstituted Alkenes without Sacrificial Hydrogenation−a route to
1,1-Disubstituted Vinylboronates. Chem. Commun. 2003, 614−615. (b)
Mkhalid, I. A. I.; Coapes, R. B.; Edes, S. N.; Coventry, D. N.; Souza, F. E. S.;
Thomas, R. L.; Hall, J. J.; Bi, S.-W.; Lin, Z.; Marder, T. B. Rhodium
Catalysed Dehydrogenative Borylation of Alkenes: Vinylboronates via
C−H Activation. Dalton Trans. 2008, 1055−1064. (c) Kondoh, A.;
Jamison, T. F. Rhodium-Catalyzed Dehydrogenative Borylation of
Cyclic Alkenes. Chem. Commun. 2010, 46, 907−909. (d) Morimoto, M.;
Miura, T.; Murakami, M. Rhodium-Catalyzed Dehydrogenative
Borylation of Aliphatic Terminal Alkenes with Pinacolborane. Angew.
Chem., Int. Ed. 2015, 54, 12659−12663.
(14) (a) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling
Reactions of Organoboron Compounds. Chem. Rev. 1995, 95,
2457−2483. (b) Hayashi, T.; Yamasaki, K. Rhodium-Catalyzed
Asymmetric 1,4-Addition and Its Related Asymmetric Reactions. Chem.
Rev. 2003, 103, 2829−2844. (c) Watanabe, J.; Hoshino, T.; Nakamura,
Y.; Sakai, E.; Okamoto, S. Folded H-Stacking Polymers by
Conformational Control with 2-Substituted Trimethylene Tethers.
(18) (a) Hata, T.; Kitagawa, H.; Masai, H.; Kurahashi, T.; Shimizu, M.;
Hiyama, T. Geminal Difunctionalization of Alkenylidene-Type
Carbenoids by Using Interelement Compounds. Angew. Chem., Int. Ed.
2001, 40, 790−792. (b) Krautwald, S.; Bezdek, M. J.; Chirik, P. J. Cobalt-
Catalyzed 1,1-Diboration of Terminal Alkynes: Scope, Mechanism, and
Synthetic Applications. J. Am. Chem. Soc. 2017, 139, 3868−3875. (c) Li,
S.; Li, J.; Xia, T.; Zhao, W. Stereoselective Synthesis of Vinylboronates
by Rh-Catalyzed Borylation of Stereoisomeric Mixtures. Chin. J. Chem.
2019, 37, 462−468. (d) Liang, M. Z.; Meek, S. J. Catalytic
Enantioselective Synthesis of 1,4-Keto-Alkenylboronate Esters and
1,4-Dicarbonyls. Angew. Chem., Int. Ed. 2019, 58, 14234−14239. (e)
10
ACS Paragon Plus Environment