62.44, 43.47, 26.00, 25.95, 18.41, 18.29, −4.43, −4.98, −5.46, −5.55; high res-
3.9 Hz, 1H), 0.93 (s, 9H), 0.83 (s, 9H), 0.08 (s, 3H), 0.08 (s, 3H), −0.21 (s, 3H),
−0.57 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 136.18, 129.08, 128.60, 127.92,
94.33, 82.45, 72.45, 71.32, 63.15, 45.66, 26.07, 25.95, 18.53, 18.13, −5.22,
þ
olution mass spectrometry (HRMS) (m∕z): ½M þ Hꢀþ calcd for C24H44NO6Si2
498.2702, found 498.2700. Enantiomeric excess: 98%, determined by HPLC
after reduction to corresponding alcohol (Chiralpak IC, hexane∕i-PrOH ¼
97∶3, flow rate 1.00 mL∕ min, λ ¼ 220 nm, rt): tRðmajorÞ ¼ 13.6 min,
tRðminorÞ ¼ 15.2 min.
−5.24, −5.47, −5.73; HRMS (m∕z): ½M þ Hꢀþ calcd for C24H44NO6Si2
þ
498.2702, found 498.2705. Enantiomeric excess: 98%, determined by
HPLC (Chiralpak AD-H, hexane∕i-PrOH ¼ 99∶1, flow rate 1.00 mL∕ min, λ ¼
220 nm, rt): tRðmajorÞ ¼ 11.6 min, tRðminorÞ ¼ 8.8 min.
The procedure for synthesis of 3,4-dideoxy-D-mannose derivative 7a was
similar to that for 6a, except for the use of DBU rather than triethylamine.
3,4-Dideoxy-D-mannose derivative 7a (50.6 mg, 51%) was obtained as a
colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.33 − 7.21 (m, 5H), 5.47 (dd,
J ¼ 12.0, 9.8 Hz, 1H), 5.13 (d, J ¼ 1.3 Hz, 1H), 4.47 (dt, J ¼ 9.8, 3.5 Hz, 1H),
3.94 (dd, J ¼ 12.0, 2.5 Hz, 1H), 3.82 − 3.77 (m, 2H), 3.74 (dd, J ¼ 11.5,
ACKNOWLEDGMENTS. We thank the Skaggs Institute for Chemical Biology
for financial support. G.H.-T. thanks the Spanish Ministry of Education for
a fellowship.
1. Freudenberg K (1966) Emil Fischer and his contribution to carbohydrate chemistry. Adv
Carbohydr Chem Biochem 21:1–38.
2. List B, Lerner RA, Barbas CF, III (2000) Proline-catalyzed direct asymmetric aldol
reactions. J Am Chem Soc 122:2395–2396.
3. Sakthivel K, Notz W, Bui T, Barbas CF, III (2001) Amino acid catalyzed direct asymmetric
aldol reactions: A bioorganic approach to catalytic asymmetric carbon–carbon bond-
forming reactions. J Am Chem Soc 123:5260–5267.
26. Liu Y, Sun B, Wang B, Wakem M, Deng L (2009) Catalytic asymmetric conjugate
addition of simple alkyl thiols to α,β-unsaturated N-acylated oxazolidin-2-ones with
bifunctional catalysts. J Am Chem Soc 131:418–419.
27. Mei K, et al. (2009) Simple cyclohexanediamine-derived primary amine thiourea
catalyzed highly enantioselective conjugate addition of nitroalkanes to enones.
Org Lett 11:2864–2867.
28. Okino T, Hoashi Y, Takemoto Y (2003) Enantioselective michael reaction of malonates
4. Barbas CF, III (2008) Organocatalysis lost: Modern chemistry, ancient chemistry, and an
unseen biosynthetic apparatus. Angew Chem Int Ed 47:42–47.
to nitroolefins catalyzed by bifunctional organocatalysts.
125:12672–12673.
J Am Chem Soc
5. Notz W, Tanaka F, Barbas CF, III (2004) Enamine-based organocatalysis with proline and
diamines: The development of direct catalytic asymmetric aldol, Mannich, Michael,
and Diels–Alder reactions. Acc Chem Res 37:580–591.
29. Wang J, Li H, Yu X, Zu L, Wang W (2005) Chiral binaphthyl-derived amine-thiourea
organocatalyst-promoted asymmetric Morita–Baylis–Hillman Reaction. Org Lett
7:4293–4296.
6. Tanaka F, Barbas CF, III (2004) Antibody-catalyzed aldol reactions. Modern Aldol Reac-
tions, Volume 1: Enolates, Biocatalysis, and Natural Product Synthesis, ed R Mahrwald
(Wiley, New York), pp 273–310.
7. Wagner J, Lerner RA, Barbas CF, III (1995) Efficient aldolase catalytic antibodies that
use the enamine mechanism of natural enzymes. Science 270:1797–1800.
8. Bertelsen S, Jørgensen KA (2009) Organocatalysis—After the gold rush. Chem Soc Rev
38:2178–2189.
9. Doyle AG, Jacobsen EN (2007) Small-molecule H-bond donors in asymmetric catalysis.
Chem Rev 107:5713–5743.
10. Takemoto Y (2005) Recognition and activation by ureas and thioureas: stereoselective
reactions using ureas and thioureas as hydrogen-bonding donors. Org Biomol Chem
3:4299–4306.
11. Tian S, et al. (2004) Asymmetric organic catalysis with modified cinchona alkaloids. Acc
Chem Res 37:621–631.
12. Bui T, Barbas CF, III (2000) A proline-catalyzed asymmetric Robinson annulation reac-
tion. Tetrahedron Lett 41:6951–6954.
13. Chowdari NS, Ramachary DB, Barbas CF, III (2003) Organocatalytic asymmetric assem-
bly reactions: One-pot synthesis of functionalized β-amino alcohols from aldehydes,
ketones, and azodicarboxylates. Org Lett 5:1685–1688.
14. Chowdari NS, Ramachary DB, Córdova A, Barbas CF, III (2002) Proline-catalyzed asym-
metric assembly reactions: enzyme-like assembly of carbohydrates and polyketides
from three aldehyde substrates. Tetrahedron Lett 43:9591–9595.
15. Enders D, Grondal C, Hüttl MRM (2007) Asymmetric organocatalytic domino reactions.
Angew Chem Int Ed 46:1570–1581.
30. Palomo C, Oiarbide M, Laso A (2007) Recent advances in the catalytic asymmetric
nitroaldol (Henry) reaction. Eur J Org Chem 2561–2574.
31. Adibekian A, et al. (2008) Stereocontrolled synthesis of fully functionalized D-gluco-
samine monosaccharides via a domino nitro-Michael/Henry reaction. Chem Commun
3549–3551.
32. Hayashi Y, Okano T, Aratake S, Hazelard D (2007) Diphenylprolinol silyl ether as a
catalyst in an enantioselective, catalytic, tandem Michael/Henry reaction for the
control of four stereocenters. Angew Chem Int Ed 46:4922–4925.
33. Xu D, et al. (2008) A novel enantioselective catalytic tandem oxa-Michael–Henry
reaction: One-pot organocatalytic asymmetric synthesis of 3-Nitro-2H-chromenes.
Adv Synth Catal 350:2610–2616.
34. García Ruano JL, Marcos V, Suanzes JA, Marzo L, Alemán J (2009) One-pot synthesis of
pentasubstituted cyclohexanes by a Michael addition followed by a tandem inter–in-
tra double Henry reaction. Chem Eur J 15:6576–6580.
35. Han B, Xiao Y, He Z, Chen Y (2009) Asymmetric Michael addition of γ,γ-disubstituted
α,β-unsaturated aldehydes to nitroolefins via dienamine catalysis. Org Lett
11:4660–4663.
36. Jakubec P, Helliwell M, Dixon DJ (2008) Cyclic imine nitro-Mannich/lactamization
cascades: a direct stereoselective synthesis of multicyclic piperidinone derivatives.
Org Lett 10:4267–4270.
37. Sakai T, et al. (1995) Absolute configuration of spicamycin, an antitumor antibiotic
produced by Streptomyces alanosinicus. J Antibiot 48:899–900.
38. Morriello GJ, et al. (2008) Fused bicyclic pyrrolizinones as new scaffolds for human NK1
antagonists. Bioorg Med Chem 16:2156–2170.
39. Betancort JM, Barbas CF, III (2001) Catalytic direct asymmetric Michael reactions:
Taming naked aldehyde donors. Org Lett 3:3737–3740.
40. Hayashi Y, Gotoh H, Hayashi T, Shoji M (2005) Diphenylprolinol silyl ethers as efficient
organocatalysts for the asymmetric Michael reaction of aldehydes and nitroalkenes.
Angew Chem Int Ed 44:4212–4215.
41. Hoffmann RW (1989) Allylic 1,3-strain as a controlling factor in stereoselective trans-
formations. Chem Rev 89:1841–1860.
42. Fleming I, Lewis JJ (1985) A paradigm for diastereoselectivity in electrophilic attack on
trigonal carbon adjacent to a chiral centre: The methylation and protonation of some
open-chain enolates. J Chem Soc Chem Commun 149–151.
43. Bott G, Field LD, Sternhell S (1980) Steric effects. A study of a rationally designed
system. J Am Chem Soc 102:5618–5626.
16. Enders D, Hüttl MRM, Grondal C, Raabe G (2006) Control of four stereocentres in a
triple cascade organocatalytic reaction. Nature 441:861–863.
17. Enders D, Grondal C (2005) Direct organocatalytic de novo synthesis of carbohydrates.
Angew Chem Int Ed 44:1210–1212.
18. Jiang H, et al. (2009) Achieving molecular complexity by organocatalytic one-pot stra-
tegies—A fast entry for synthesis of sphingoids, amino sugars, and polyhydroxylated
α-amino acids. Angew Chem Int Ed 48:6844–6848.
19. Northrup AB, MacMillan DWC (2004) Two-step synthesis of carbohydrates by selective
aldol reactions. Science 305:1752–1755.
20. Ramasastry SSV, Albertshofer K, Utsumi N, Tanaka F, Barbas CF, III (2007) Mimicking
fructose and rhamnulose aldolases: Organocatalytic syn-aldol reactions with unpro-
tected dihydroxyacetone. Angew Chem Int Ed 46:5572–5575.
21. Ramasastry SSV, Zhang H, Tanaka F, Barbas CF, III (2007) Direct catalytic asymmetric
synthesis of anti-1,2-amino alcohols and syn-1,2-diols through organocatalytic anti-
Mannich and syn-aldol reactions. J Am Chem Soc 129:288–289.
44. Shinisha CB, Sunoj RB (2008) Unraveling high precision stereocontrol in a triple cascade
organocatalytic reaction. Org Biomol Chem 6:3921–3929.
45. Paddon-Row MN, Rondan NG, Houk KN (1982) Staggered models for asymmetric
induction: attack trajectories and conformations of allylic bonds from ab initio
transition structures of addition reactions. J Am Chem Soc 104:7162–7166.
46. McGarvey GJ, Williams JM (1985) Stereoelectronic controlling features of allylic
asymmetry. Application to ester enolate alkylations. J Am Chem Soc 107:1435–1437.
47. Arai T, Yokoyama N (2008) Tandem catalytic asymmetric Friedel–Crafts/Henry reaction:
Control of three contiguous acyclic stereocenters. Angew Chem Int Ed 47:4989–4992.
48. Sasai H, et al. (1995) Efficient diastereoselective and enantioselective nitroaldol
reactions from prochiral starting materials: Utilization of La–Li–6,6′-disubstituted
BINOL complexes as asymmetric catalysts. J Org Chem 60:7388–7389.
49. Sohtome Y, et al. (2007) Organocatalytic asymmetric nitroaldol reaction: Cooperative
effects of guanidine and thiourea functional groups. Chem Asian J 2:1150–1160.
22. Suri JT, Ramachary DB, Barbas CF, III (2005) Mimicking dihydroxy acetone phosphate-
utilizing aldolases through organocatalysis: A facile route to carbohydrates and ami-
nosugars. Org Lett 7:1383–1385.
23. Zhang H, Ramasastry SSV, Tanaka F, Barbas CF, III (2008) Organocatalytic anti-Mannich
reactions with dihydroxyacetone and acyclic dihydroxyacetone derivatives: A facile
route to amino sugars. Adv Synth Catal 350:791–796.
24. Uehara H, Barbas CF, III (2009) anti-Selective asymmetric Michael reactions of
aldehydes and nitroolefins catalyzed by a primary amine/thiourea. Angew Chem
Int Ed 48:9848–9852.
25. Lalonde MP, Chen Y, Jacobsen EN (2006) A chiral primary amine thiourea catalyst for
the highly enantioselective direct conjugate addition of α,α-disubstituted aldehydes to
nitroalkenes. Angew Chem Int Ed 45:6366–6370.
Uehara et al.
PNAS
∣
November 30, 2010
∣
vol. 107
∣
no. 48
∣
20677