3894
N. Niwa et al. / Bioorg. Med. Chem. Lett. 19 (2009) 3892–3894
To verify the ability of aFx for trans-activity, we prepared the
istry for Professor Carlos F. Barbas. This work was supported by
grants of Japan Society for the promotion of Science Grants-in-
Aid for Scientific Research (S) (16101007) to H.S., Grants-in-Aid
for JSPS Fellows (7734) to Y.Y., and a research and development
projects of the Industrial Science and Technology Program in the
New Energy and Industrial Technology Development Organization
(NEDO).
aFx domain alone by in vitro transcription from the correspond-
ing DNA template, and examined the aminoacylation onto a
microhelix RNA using denaturing acid PAGE (poly-acrylamide
gel electrophoresis), a previously reported method for the con-
ventional and reliable activity assay for trans-acting flexizymes.10
The trans-acting aFx was able to charge Leu using Leu-ABT onto
the microhelix RNA in 82% yield (Fig. 4a, lane 1). Interestingly,
it was virtually inactive toward Leu-CBT and Leu-DNB (Fig. 4a,
lanes 2 and 3), indicating that aFx exhibited high specificity to
the ABT leaving group.
Supplementary data
Supplementary data (synthetic procedures, a method of in vitro
selection, and analysis for aminoacylation were reported in supple-
mentary data) associated with this article can be found, in the on-
To investigate the tolerance of aFx toward amino acid side-
chains and
a-chirality, we synthesized five additional amino acids,
Ile, Val, Met, Pro, and
D-Leu, activated by ABT (Fig. 4b). The CBT or
DNB derivatives of these amino acids were known to have modest
or poor solubility at 5 or 10 mM in the reaction buffer unless
including above 20% (v/v) DMSO. The ABT derivatives of these ami-
no acids were, however, efficiently charged onto the microhelix
RNA in high yields (Fig. 4b). This result shows that aFx is able to
charge the ABT-derived amino acids independent from their side-
References and notes
1. Hendrickson, T. L.; de Crecy-Lagard, V.; Schimmel, P. Annu. Rev. Biochem. 2004,
73, 147.
2. Wang, L.; Xie, J.; Schultz, P. G. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 225.
3. Link, A. J.; Tirrell, D. A. Methods 2005, 36, 227.
4. Dedkova, L. M.; Fahmi, N. E.; Golovine, S. Y.; Hecht, S. M. J. Am. Chem. Soc. 2003,
125, 6616.
5. Forster, A. C.; Tan, Z.; Nalam, M. N.; Lin, H.; Qu, H.; Cornish, V.; Blacklow, S. C.
Proc. Natl. Acad. Sci. U.S.A. 2003, 1000, 6353.
6. Merryman, C.; Green, R. Chem. Biol. 2004, 11, 575.
7. Tan, Z.; Forster, A. C.; Blacklow, S. C.; Cornish, V. W. J. Am. Chem. Soc. 2004, 126,
12752.
8. Tan, Z.; Blacklow, S. C.; Cornish, V. W.; Forster, A. C. Methods 2005, 36, 279.
9. Josephson, K.; Hartman, M. C. T.; Szostak, J. W. J. Am. Chem. Soc. 2005, 127,
11727.
chain structure and a-chirality.
Lastly, we performed aminoacylation using a non-proteinogenic
amino acid bearing a fatty acid, 2-amino-3-(octanamido)propanoic
acid (Opa, Fig. 4c). We found that eFx was able to charge Opa-CBT
onto the microhelix RNA in 26% yield (Fig. 4d, lane 1), whereas aFx
was able to charge Opa-ABT in 48% yield (Fig. 4d, lane 2). Clearly,
improving the water-solubility of the acyl-donor substrate offered
a better yield.
10. Murakami, H.; Ohta, A.; Ashigai, H.; Suga, H. Nat. Methods 2006, 3, 357.
11. Zhang, B.; Tan, Z.; Dickson, L. G.; Nalam, M. N.; Cornish, V. W.; Forster, A. C. J.
Am. Chem. Soc. 2007, 129, 11316.
12. Ohta, A.; Murakami, H.; Higashimura, E.; Suga, H. Chem. Biol. 2007, 14, 1315.
13. Kawakami, T.; Murakami, H.; Suga, H. Chem. Biol. 2008, 15, 32.
14. Goto, Y.; Ohta, A.; Sako, Y.; Yamagishi, Y.; Murakami, H.; Suga, H. ACS Chem.
Biol. 2008, 3, 120.
15. Sako, Y.; Goto, Y.; Murakami, H.; Suga, H. ACS Chem. Biol. 2008, 3, 241.
16. Ohta, A.; Yamagishi, Y.; Suga, H. Curr. Opin. Chem. Biol. 2008, 12, 159.
17. Kang, T. J.; Suga, H. Biochem. Cell Biol. 2008, 86, 92.
18. Sako, Y.; Morimoto, J.; Murakami, H.; Suga, H. J. Am. Chem. Soc. 2008, 130, 7232.
19. Goto, Y.; Murakami, H.; Suga, H. RNA 2008, 14, 1390.
20. Ohta, A.; Murakami, H.; Suga, H. ChemBioChem 2008, 9, 2773.
21. Kang, T. J.; Yuzawa, S.; Suga, H. Chem. Biol. 2008, 15, 1166.
22. Murakami, H.; Saito, H.; Suga, H. Chem. Biol. 2003, 10, 655.
23. Ohuchi, M.; Murakami, H.; Suga, H. Curr. Opin. Chem. Biol. 2007, 11, 537.
24. Xiao, H.; Murakami, H.; Suga, H.; Ferre-D’Amare, A. R. Nature 2008, 454,
358.
In conclusion, we have devised a new pair of flexizyme and sub-
strate activating group for tRNA aminoacylation, referred to as aFx
and ABT. aFx selectively charges ABT-activated amino acids onto
tRNA independent from the sidechain kinds. Importantly, the
ABT leaving group makes hydrophobic amino acid substrates more
water-friendly than CBT and DBE. We now have three pairs of flex-
izyme and acyl-donor, allowing us to choose the most appropriate
pair of flexizyme and acyl-donor depending upon the substrate
properties for the genetic code reprogramming.
Acknowledgments
This paper is dedicated to the recognition of the 2009 Tetrahe-
dron Young Investigator Award in Bioorganic and Medicinal Chem-