ARTICLES
28. Winkler, H. J. S. & Wittig, G. Preparation and reactions of o-dilithiobenzene.
J. Org. Chem. 28, 1733–1740 (1963).
Received 23 June 2010; accepted 6 October 2010;
published online 14 November 2010
′
¨
29. Wittig, G. & Klar, G. Uber die Reaktionsweise von 2,2 -Dilithium-biphenyl
gegenu¨ber Metallhalogeniden, II. Liebigs Ann. Chem. 704, 91–108 (1967).
30. Blake, A. J., Cooke, P. A., Doyle, K. J., Gair, S. & Simpkins, N. S. Poly-
orthophenylenes: synthesis by Suzuki coupling and solid state helical structures.
Tetrahedron Lett. 39, 9093–9096 (1998).
31. Ormsby, J. L., Black, T. D., Hilton, C. L., Bharat & King, B. T. Rearrangements in
the Scholl oxidation: implications for molecular architectures. Tetrahedron 64,
11370–11378 (2008).
32. Geerts, Y., Kla¨rner, G. & Mu¨llen, K. Electronic Materials: The Oligomer Approach
Ch. 1 (Wiley-VCH, 1998).
33. Goto, H., Furusho, Y., Miwa, K. & Yashima, E. Double helix formation of
oligoresorcinols in water: thermodynamic and kinetic aspects. J. Am. Chem. Soc.
131, 4710–4719 (2009).
34. Voisin, E. & Williams, V. E. Do catechol derivatives electropolymerize?
Macromolecules 41, 2994–2997 (2008).
35. Ibuki, E., Ozasa, S. & Murai, K. Studies of polyphenyls and polyphenylenes. I.
The syntheses and infrared and electronic spectra of several sexiphenyls. Bull.
Chem. Soc. Jpn 48, 1868–1874 (1975).
36. Viedma, C. Chiral symmetry breaking during crystallization: complete chiral
purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 94,
065504 (2005).
37. Noorduin, W. L., Vlieg, E., Kellogg, R. M. & Kaptein, B. From Ostwald ripening
to single chirality. Angew. Chem. Int. Ed. 48, 9600–9606 (2009).
38. Uwaha, M. & Katsuno, H. Mechanism of chirality conversion by grinding
crystals: Ostwald ripening vs crystallization of chiral clusters. J. Phys. Soc. Jpn 78,
023601 (2009).
39. Kondepudi, D. K., Kaufman, R. J. & Singh, N. Chiral symmetry breaking in
sodium chlorate crystallization. Science 250, 975–976 (1990).
40. Kondepudi, D. K. & Asakura, K. Chiral autocatalysis, spontaneous symmetry
breaking, and stochastic behavior. Acc. Chem. Res. 34, 946–954 (2001).
41. Sakamoto, M. et al. Breaking the symmetry of axially chiral N-aryl-2(1H)-
pyrimidinones by spontaneous crystallization. Angew. Chem. Int. Ed. 42,
4360–4363 (2003).
42. Hunter, C. A. & Sanders, J. K. M. The nature of p–p interactions. J. Am. Chem.
Soc. 112, 5525–5534 (1990).
43. Milosevich, S. A., Saichek, K., Hinchey, L., England, W. B. & Kovacic, P.
Coordination in benzene dimer cation radical. J. Am. Chem. Soc. 105,
1088–1090 (1983).
44. Hiraoka, K., Fujimaki, S., Aruga, K. & Yamabe, S. Stability and structure of
benzene dimer cation (C6H6)2þ in the gas phase. J. Chem. Phys. 95,
8413–8418 (1991).
45. Graf, D. D., Duan, R. G., Campbell, J. P., Miller, L. L. & Mann, K. R. From
monomers to p-stacks. A comprehensive study of the structure and properties
of monomeric, p-dimerized, and p-stacked forms of the cation radical of
3′,4′-dibutyl-2,5′′-diphenyl-2,2′:5′,2′′-terthiophene. J. Am. Chem. Soc. 119,
5888–5899 (1997).
46. Itagaki, Y., Benetics, N. P., Kadam, R. M. & Lund, A. Structure of dimeric radical
cations of benzene and toluene in halocarbon matrices: An EPR, ENDOR and
MO study. Phys. Chem. Chem. Phys. 2, 2683–2689 (2000).
47. Yamazaki, D., Nishinaga, T., Tanino, N. & Komatsu, K. Terthiophene radical
cations end-capped by bicyclo[2.2.2]octane units: formation of bent p-dimers
mutually attracted at the central position. J. Am. Chem. Soc. 128,
14470–14471 (2006).
48. Song, C. & Swager, T. M. p-Dimer formation as the driving force for
calix[4]arene-based molecular actuators. Org. Lett. 10, 3575–3578 (2008).
49. Chebny, V. J., Shukla, R., Lindeman, S. V. & Rathore, R. Molecular actuator:
redox-controlled clam-like motion in a bichromophoric electron donor. Org.
Lett. 11, 1939–1942 (2009).
References
1. Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. Helical polymers:
synthesis, structures, and functions. Chem. Rev. 109, 6102–6211 (2009).
2. Yuki, H., Okamoto, Y. & Okamoto, I. Resolution of racemic compounds by
optically active poly(triphenylmethyl methacrylate). J. Am. Chem. Soc. 102,
6356–6358 (1980).
3. Okamoto, Y. Chiral polymers for resolution of enantiomers. J. Polym. Sci. A 47,
1731–1739 (2009).
4. Yashima, E., Maeda, Y. & Okamoto, Y. Synthesis of poly[N-(4-ethynylbenzyl)
ephedrine] and its use as a polymeric catalyst for enantioselective addition of
dialkylzincs to benzaldehyde. Polym. J. 31, 1033–1036 (1999).
5. Reggelin, M., Doerr, S., Klussmann, M., Schultz, M. & Holbach, M. Helically
chiral polymers: a class of ligands for asymmetric catalysis. Proc. Natl Acad. Sci.
USA 101, 5461–5466 (2004).
6. Roelfes, G. & Feringa, B. L. DNA-based asymmetric catalysis. Angew. Chem. Int.
Ed. 44, 3230–3232 (2005).
7. Yamamoto, T. & Suginome, M. Helical poly(quinoxaline-2,3-diyl)s bearing
metal-binding sites as polymer-based chiral ligands for asymmetric catalysis.
Angew. Chem. Int. Ed. 48, 539–542 (2009).
8. Yashima, E. & Maeda, K. Chirality-responsive helical polymers. Macromolecules
41, 3–12 (2008).
9. Miwa, K., Furusho, Y. & Yashima, E. Ion-triggered spring-like motion of
a double helicate accompanied by anisotropic twisting. Nature Chem. 2,
444–449 (2010).
10. Green, M. M. et al. A helical polymer with a cooperative response to chiral
information. Science 268, 1860–1866 (1995).
11. Yashima, E., Matsushima, T. & Okamoto, Y. Poly((4-carboxyphenyl)acetylene)
as a probe for chirality assignment of amines by circular dichroism. J. Am. Chem.
Soc. 117, 11596–11597 (1995).
12. Prince, R. B., Barnes, S. A. & Moore, J. S. Foldamer-based molecular recognition.
J. Am. Chem. Soc. 112, 2758–2762 (2000).
13. Waki, M., Abe, H. & Inouye, M. Translation of mutarotation into induced CD
signals through helix inversion of host polymers. Angew. Chem. Int. Ed. 46,
3059–3061 (2007).
14. Petitjean, A., Nierengarten, H., van Dorsselaer, A & Lehn, J.-M. Self-
organization of oligomeric helical stacks controlled by substrate binding in a
tobacco mosaic virus like self-assembly process. Angew. Chem. Int. Ed. 43,
3695–3699 (2004).
15. Hou, J.-L. et al. Hydrogen bonded oligohydrazide foldamers and their
recognition for saccharides. J. Am. Chem. Soc. 126, 12386–12394 (2004).
16. Maurizot, V., Dolain, C. & Huc, I. Intramolecular versus intermolecular
induction of helical handedness in pyridinedicarboxamide oligomers. Eur. J.
Org. Chem. 2005, 1293–1301 (2005).
17. Okoshi, K., Sakurai, S.-I., Ohsawa, S., Kumaki, J. & Yashima, E. Control of main-
chain stiffness of a helical poly(phenylacetylene) by switching on and off the
intramolecular hydrogen bonding through macromolecular helicity inversion.
Angew. Chem. Int. Ed. 45, 8173–8176 (2006).
18. Yamamoto, T., Yamada, T., Nagata, Y. & Suginome, M. High-molecular-weight
polyquinoxaline-based helically chiral phosphine (PQXphos) as chirality-
switchable, reusable, and highly enantioselective monodentate ligand in catalytic
asymmetric hydrosilylation of styrenes. J. Am. Chem. Soc. 132,
7899–7901 (2010).
19. Kim, H.-J., Lee, E., Park, H.-S. & Lee, M. Dynamic extension–contraction
motion in supramolecular springs. J. Am. Chem. Soc. 129, 10994–10995 (2007).
20. Maxein, G. & Zentel, R. Photochemical inversion of the helical twist sense in
chiral polyisocyanates. Macromolecules 28, 8438–8440 (1995).
21. Li, J., Schuster, G. B., Cheon, K.-S., Green, M. M. & Selinger, J. V. Switching a
helical polymer between mirror images using circularly polarized light. J. Am.
Chem. Soc. 122, 2603–2612 (2000).
50. Das, T. N. Monomer and dimer radical cations of benzene, toluene, and
naphthalene. J. Phys. Chem. A 113, 6489–6493 (2009).
22. Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of
a helical polymer with a single light-driven molecular motor. Angew. Chem. Int.
Ed. 46, 3693–3696 (2007).
23. King, E. D., Tao, P., Sanan, T. T., Hadad, C. M. & Parquette, J. R.
Photomodulated chiral induction in helical azobenzene oligomers. Org. Lett. 10,
1671–1674 (2008).
Acknowledgements
This work was supported by KAKENHI (21350108). The authors thank S. Ohkoshi and
K. Nakabayashi (University of Tokyo) for the measurement of the ESR spectrum.
Author contributions
T.F. and T.A. designed the work. E.O., T.F. and T.A. wrote the paper. E.O., H.S., S.A. and
A.K. performed the experiments. Single-crystal X-ray diffraction studies were carried
out through the collaboration of D.H., M.Y. and K.H., A.M., H.U. and K.Y. were
responsible for DFT calculations.
24. Marsella, M. J., Rahbarnia, S. & Wilmot, N. Molecular springs, muscles,
rheostats, and precessing gyroscopes: from review to preview. Org. Biomol.
Chem. 5, 391–400 (2007).
25. Hida, N. et al. Helical, chiral polyisocyanides bearing ferrocenyl groups as
pendants: synthesis and properties. Angew. Chem. Int. Ed. 42, 4349–4352 (2003).
26. Gomar-Nadal, E., Veciana, J., Rovira, C. & Amabilino, D. B. Chiral teleinduction Additional information
in the formation of a macromolecular multistate chiroptical redox switch. Adv.
Mater. 17, 2095–2098 (2005).
27. Wittig, G. & Lehmann, G. Uber die Reaktionsweise von 2,2 -Dilithium-diphenyl
gegenu¨ber Metallchloriden; Gleichzeitig ein Beitrag zur Synthese von Poly-o-
phenylenen. Chem. Ber. 90, 875–892 (1957).
′
¨
73
© 2011 Macmillan Publishers Limited. All rights reserved.