574
F. Aloui et al. / Tetrahedron Letters 52 (2011) 572–575
S
S
Cl
Cl
Cl
Ru
Ph
Ph
Ru
CH2Cl2, rt
75%
Ru
1/2
+
PPh2
P
Cl
Cl
Cl
8
6
9
Scheme 3. Synthetic route towards the helically chiral ruthenium(II) complex 9.
9. Reetz, M. T.; Sostmann, S. J. Organomet. Chem. 2000, 603, 105–109.
rodiphenylphosphine yielded the desired 3-(diphenylphos-
phino)thiahexahelicene 6 in 70% yield and in 23% overall yield over
five steps, starting from the commercially available 1,4-dibromo-
benzene (Scheme 2).18 This helically chiral trivalent phosphine
was a slightly air-sensitive solid. It is better handled and stored un-
der an inert atmosphere or treated with a 35% hydrogen peroxide
solution to give the corresponding phosphine oxide 7 in excellent
yield.
´
10. Paruch, K.; Vyklicky, L.; Wang, D. Z.; Katz, T. J.; Incarvito, C.; Zakharov, L.;
Rheingold, A. L. J. Org. Chem. 2003, 68, 8539–8544.
11. Teply´, F.; Stará, I. G.; Stary´, I.; Kollárovic, A.; Šaman, D.; Vyskocil, Š.; Fiedler, P. J.
Org. Chem. 2003, 68, 5193–5197.
12. (a) Aloui, F.; El Abed, R.; Marinetti, A.; Ben Hassine, B. Tetrahedron Lett. 2008,
49, 4092–4095; (b) Aloui, F.; El Abed, R.; Ben Hassine, B. Tetrahedron Lett. 2008,
49, 1455–1457; (c) Aloui, F.; El Abed, R.; Marinetti, A.; Ben Hassine, B. C. R.
Chim. 2009, 12, 284–290; (d) Aloui, F.; El Abed, R.; Marinetti, A.; Ben Hassine, B.
Tetrahedron Lett. 2007, 48, 2017–2020; (e) Aloui, F.; El Abed, R.; Guerfel, T.; Ben
Hassine, B. Synth. Commun 2006, 11, 1557–1567.
Finally, with the new helical phosphine 6 in hand, we next
investigated its coordinating ability towards transition metals. This
was performed by reacting phosphine 6 with [(p-cymene)RuCl2]2
dimeric complex 8 in dichloromethane at room temperature for
30 min (Scheme 3). Flash chromatography of the resulting reaction
mixture gave the mononuclear ruthenium complex 9 in 75% yield.
This synthetic procedure is very simple and can be performed on
multigram scale. Good analytical data were obtained for the heli-
cally chiral ruthenium complex 9, which is an orange-red solid sta-
ble in air. Characteristic spectroscopic data of this compound
consisted of a single 31P NMR resonance at 27.06 ppm in CDCl3 at
room temperature.19
In summary, we have developed a short procedure for the prep-
aration of a new helically chiral hexacyclic phosphine from readily
available and inexpensive materials. We accomplished the synthe-
sis of phosphine 6 in five steps, with an overall yield of 23%. This
trivalent phosphine was found to be a useful ligand for the prepa-
ration of a highly stable helical ruthenium complex which may
possess interesting catalytic activity. Further work in this field is
in progress.
13. (a) El Abed, R.; Ben Hassine, B.; Genêt, G.-P.; Gorsane, M.; Marinetti, A. Eur. J.
}
Org. Chem. 2004, 1517–1522; (b) Herrmann, W. A.; Brossmer, C.; Ofele, K.;
Reisinger, C. P.; Priermeir, T.; Beller, M.; Fisher, H. Angew. Chem., Int. Ed. Engl.
1995, 34, 1844–1848.
14. Selected data for the diarylethene 2: colourless solid, showing
a violet
fluorescence when dissolved; Rf = 0.52 (cyclohexane/EtOAc, 98:2); mp = 158–
160 °C; 1H NMR (500 MHz, CDCl3): d (ppm): 7.27 (d, J = 16.5 Hz, 1H, Hvinyl),
7.44 (d, J = 16.5 Hz, 1H, Hvinyl), 7.50–7.56 (m, 5H), 7.66 (t, J = 7.5 Hz, 1H), 7.83
(d, J = 8.5 Hz, 1H), 7.86 (d, J = 9 Hz, 1H), 7.90 (d, J = 8.5 Hz, 1H), 8.00 (d, J = 8 Hz,
1H), 8.03 (d, J = 8 Hz, 1H), 8.90 (d, J = 8.5 Hz, 1H), 8.98 (s, 1H); 13C NMR
(75 MHz, CDCl3): d (ppm): 121.18 (CH), 121.57 (C),122.09 (CH), 122.71 (CH),
123.29 (CH), 124.68 (CH), 124.88 (CH), 125.35 (CH), 127.52(CH), 128.12 (2CH),
128.36 (CH), 129.01 (C), 129.86 (CH), 129.92 (CH), 130.95 (C),131.59 (C),
131.88 (2CH), 135.69 (C), 136.25 (C), 136.63 (C), 139.18 (C), 139.85 (C).
15. Liu, L.; Yang, B.; Katz, T. J.; Poindexter, M. K. J. Org. Chem. 1991, 56, 3769–3775.
16. Selected data for 2-bromothiahexahelicene 3: pale yellow solid, showing a violet
fluorescence when dissolved; Rf = 0.54 (cyclohexane/EtOAc, 98:2); mp = 196–
198 °C; 1H NMR (500 MHz, CDCl3): d (ppm): 6.84–7.12 (m, 2H), 7.35–7.39 (m,
1H), 7.54 (dd, J1 = 8.5 Hz, J2 = 1.5 Hz, 1H, H-2), 7.86 (d, J = 8.5 Hz, 1H), 7.89 (d,
J = 8.5 Hz, 1H), 7.94–7.99 (m, 3H), 8.01 (d, J = 9 Hz, 1H), 8.03 (d, J = 9 Hz, 1H),
8.09 (d, J = 1.5 Hz, 1H, H-1), 8.12 (d, J = 8.5 Hz, 1H); 13C NMR (75 MHz, CDCl3): d
(ppm): 120.12 (C), 121.78 (CH), 122.36 (CH), 122.58 (CH), 124.45 (C), 125.64
(CH), 125.78 (CH), 126.16 (CH), 126.67 (CH), 126.98 (CH), 127.56 (CH), 128.22
(CH), 128.79 (CH), 129.18 (CH), 129.87 (C), 131.03 (C), 131.23 (C), 131.33 (CH),
131.60 (C), 131.63 (C), 132.59 (C), 135.68 (C), 138.51 (C), 139.99 (C); ESI-MS:
m/z = 411.99 [M+]; Anal. Calcd for C24H13BrS: C, 69.74; H, 3.17. Found: C, 69.67;
H, 3.15.
17. Crystal data for compound 3 (C24H13BrS) were recorded on a Bruker SMART
CCD diffractometer, M = 413.31, monoclinic, space group P21/n.
a = 13.3335(4) Å, b = 7.2326(2) Å, c = 18.2038(13) Å, V = 1750.90(14) Å3, Z = 4,
Acknowledgement
q
calcd = 1.568 g/cm3, X-ray source Cu K
a, k = 1.54180 Å, T = 293(2) K, measured
The authors are grateful to the DGRS (Direction Générale de la
Recherche Scientifique) of the Tunisian Ministry of Higher Educa-
tion and Scientific Research.
reflections = 6591, independent reflections = 3100, reflections used = 3100,
refinement type = Fmls, parameters refined = 236, R1 = 0.088, wR2 = 0.306.
Crystallographic data for the structure in this paper have been deposited
with the Cambridge Crystallographic Data Centre as supplementary
publication number CCDC 781749. These data can be obtained free of charge
from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44(0) 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk.
References and notes
1. (a) Martin, R. H.; Marchant, M. J. Tetrahedron 1974, 30, 347–349; (b) Yamada,
K.; Nakagawa, H.; Kawazura, H. Bull. Chem. Soc. Jpn 1986, 59, 2429–2432; (c)
Kim, C.; Marks, T. J.; Facchetti, A.; Schiavo, M.; Bossi, A.; Maiorana, S.; Licandro,
E.; Todescato, F.; Toffanin, S.; Muccini, M.; Graiff, C.; Tiripicchio, A. Org. Electron.
2009, 10, 1511–1520; (d) Sahasithiwat, S.; Mophuang, T.; Menbangpung, L.;
Kamtonwong, S.; Sooksimuang, T. Synth. Met. 2010, 160, 1148–1152; (e) Severa,
L.; Adriaenssens, L.; Vávra, J.; Šaman, D.; Císarová, I.; Fiedler, P.; Teply, F.
Tetrahedron 2010, 66, 3537–3552.
2. (a) Verbist, T.; Sioncke, S.; Persoons, A.; Vyklicky, L.; Katz, T. J. Angew. Chem., Int.
Ed. 2002, 41, 3882–3884; (b) Nuckolls, C.; Katz, T. J.; Katz, G.; Collings, P. J.;
Castellanos, L. J. Am. Chem. Soc. 1999, 121, 79–88.
3. (a) Fox, J. M.; Lin, D. J. Org. Chem. 1998, 63, 2031–2038; (b) Dai, Y.; Katz, T. J. J.
Org. Chem. 1997, 62, 1274–1285.
4. (a) Kelly, T. R.; Tellitu, I.; Pérez Sestelo, J. Angew. Chem., Int. Ed. 1997, 36, 1866–
1868; (b) Kelly, T. R.; Silva, R. A.; De Silva, H.; Jasmin, S.; Zhao, Y. J. Am. Chem.
Soc. 2000, 122, 6935–6949.
18. Selected data for the phosphine 6: pale yellow solid, showing
a violet
fluorescence when dissolved; Rf = 0.65 (cyclohexane/EtOAc, 98:2); 1H NMR
(300 MHz, CDCl3): d (ppm): 6.86–6.96 (m, 6H), 7.17–7.29 (m, 7H), 7.45 (td,
J1 = 8 Hz, J2 = 1.5 Hz, 1H), 7.86 (d, J = 8 Hz, 1H), 7.88 (d, J = 8 Hz, 1H), 7.95 (d,
J = 8 Hz, 1H), 7.97–8.01 (m, 5H), 8.04 (d, J = 8 Hz, 1H); 13C NMR (75 MHz,
CDCl3): d (ppm): 121.67 (CH), 122.27 (CH), 122.63 (CH), 124.63 (C), 125.32
(CH), 125.52 (C), 125.72 (CH), 126.01 (CH), 126.66 (CH), 126.87 (CH), 127.57
(CH), 127.68 (CH), 127.75 (d, JC–P = 10.87 Hz, CH), 128.19 (CH), 128.27 (CH),
128.35 (CH), 128.44 (CH), 128.57 (CH), 130.39 (C), 130.43 (d, JC–P = 7.05 Hz, C),
130.29 (d, JC–P = 20.47 Hz, CH), 131.27 (C), 131.61 (C), 132.38 (C), 133.43 (CH),
ˇ
´
133.47 (CH), 133.64 (CH), 133.68 (CH), 133.73 (CH), 133.90 (CH), 134.77 (d, JC–P
=
10.35 Hz, C), 135.77 (C), 136.37 (d, JC–P = 10.35 Hz, C), 136.48 (C), 138.86 (C),
139.48 (C); 31P NMR (121.5 MHz, CDCl3): d (ppm): À3.52 (s); ESI-MS: m/z =
519.1 [M+H]+; HRMS (MALDI-TOF) calcd for C36H23PS [M+H]+.: 519.12581.
Found: 519.12495.
19. Typical experimental procedure for the Ru-complex 9: A solution of phosphine 6
(100 mg, 0.193 mmol) and [(p-cymene)RuCl2]2 (59 mg, 0.096 mmol) in CH2Cl2
(5 mL) was stirred at room temperature under argon. The reaction was
complete in 30 min (TLC) and the solvent was removed under reduced
pressure. The crude product was purified by column chromatography with
CH2Cl2/EtOAc (95:5) as the eluent to give the mononuclear ruthenium complex
9 as an orange-red solid (119 mg, 75%); mp = 197–199 °C; 1H NMR (300 MHz,
5. Dreher, S. D.; Katz, T. J.; Lam, K. C.; Rheingold, A. L. J. Org. Chem. 2000, 65, 815–
822.
6. (a) Kawasaki, T.; Suzuki, K.; Licandro, E.; Bossi, A.; Maiorana, S.; Soai, K.
Tetrahedron: Asymmetry 2006, 17, 2050–2053.
7. Terfort, A.; Görls, H.; Brunner, H. Synthesis 1997, 79–86.
8. Reetz, M. T.; Beuttenmüller, E. W.; Goddart, R. Tetrahedron Lett. 1997, 38, 3211–
3214.