P. Busca et al. / Tetrahedron Letters 44 (2003) 9131–9134
9133
3. For reviews related to RCM reactions, see: (a) Grubbs,
R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28,
446; (b) Schuster, M.; Blechert, S. Angew. Chem., Int. Ed.
Engl. 1997, 36, 2036; (c) Armstrong, S. K. J. Chem. Soc.,
Perkin Trans. 1 1997, 371; (d) Grubbs, R. H.; Chang, S.
Tetrahedron 1998, 54, 4413; (e) Fu¨rstner, A. Angew.
Chem., Int. Ed. 2000, 39, 3013; (f) Trnka, T. M.; Grubbs,
R. H. Acc. Chem. Res. 2001, 34, 18.
4. (a) Biswas, K.; Lin, H.; Njardarson, J. T.; Chappell, M.
D.; Chou, T.-C.; Guan, Y.; Tong, W. P.; He, L.; Hor-
witz, S. B.; Danishefsky, J. J. Am. Chem. Soc. 2002, 124,
9825; (b) Rivkin, A.; Biswas, K.; Chou, T.-C.; Danishef-
sky, J. Org. Lett. 2002, 4, 1633; (c) Content, S.; Dutton,
C.; Roberts, L. Bioorg. Med. Chem. Lett. 2003, 13, 321;
(d) Stymiest, J. L.; Mitchell, B. F.; Wong, S.; Vederas, J.
C. Org. Lett. 2003, 5, 47; (e) Clark, J. C.; Marlin, F.;
Nay, B.; Wilson, C. Org. Lett. 2003, 5, 89.
5. (a) Montembault, M.; Bourgougnon, N.; Lebreton, J.
Tetrahedron Lett. 2002, 43, 8091; (b) Ewing, D.; Glac¸on,
V.; Mackenzie, G.; Postel, D.; Len, C. Tetrahedron Lett.
2002, 43, 3503; (c) Lee, C.; Cass, C.; Jacobson, A. Org.
Lett. 2001, 3, 597; (d) Ravn, J.; Nielsen, P. J. Chem. Soc.,
Perkin Trans. 1 2001, 985.
6. McLaughlin, L. W.; Hellman, N. P. T. Synthesis 1985,
322.
7. The use of allyl bromide and sodium hydroxide were
revealed to be less effective (30% yield).
8. (a) Lakhmiri, R.; Lhoste, P.; Sinou, D. Tetrahedron Lett.
1989, 30, 4669; (b) Sproat, B. S.; Iribarren, A. M.;
Garcia, R. G.; Beijer, B. Nucleic Acids Research 1991, 19,
733.
9. Smith, A. B.; Ott, G. R. J. Am. Chem. Soc. 1996, 118,
13095.
Figure 1. 1H NMR zoom of the 6.1–5.2 ppm region for 9a
and 9b (400 MHz, CDCl3).
Each stereoisomer was fully deprotected. Despite the
presence of an ester moiety in the macrocyclic ring,
selective N-debenzoylation was achieved in 76% yield
using phenol in refluxing dichloroethane.15 Removal of
the TBDMS group using tetrabutylammonium fluoride
in the presence of acetic acid9 afforded nucleoside ana-
logues 1016 in 85% yield.
In conclusion, we have shown that ring closing
metathesis can be used to access adenosine analogues
10. This is a new family of bicyclic nucleosides contain-
ing an olefinic moiety with a high potential for further
functionalisation. Moreover, our synthetic pathway
allows for a wide range of amino acid residues to be
introduced as well as a large variety of ring size. Efforts
to develop this family of compounds are in progress
and biological experiments on their inhibitory activity
towards tRNA dependent ligases are currently
underway.
10. Lodder, M.; Golovine, S.; Laikhter, A. L.; Karginov, V.
A.; Hecht, S. M. J. Org. Chem. 1998, 63, 794.
11. Selected spectral data for compound 7: 1H NMR (250
MHz, CDCl3) l: 0.15 (s, 6H, 2×CH3-Si), 0.90 (s, 9H,
tBu), 1.45 and 1.42 (2d, 3H, CH3, J 4.8), 2.34 (m, 4H,
2×CH2), 3.92 (m, 4H, 2H-5%, CH2), l 4.31 (dd, 1H, H-4%,
J 14), 4.62 (m, 2H, H-2%, CH), 5.05 (m, 4H, Hg, ꢁCH2),
5.44 (m, 1H, H-3%), 5.5–5.9 (2×m, 2H, Hb, CHꢁ), 6.23 (m,
2H, H-1%, NH), 7.4–7.5 (m, 3H, HBz), l 8.01 (d, 2H,
HBz, J 7), 8.32 (s, 1H, H-2 or H-8), 8.79 (s, 1H, H-2 or
H-8), 9.12 (s, 1H, NH); 13C NMR (63 MHz, CDCl3) l:
−4.5 (SiCH3), 17.15 (Cq/tBu, CH3), 24.97 (CH3/tBu),
28.37 (CH2), 34.40 (CH2), 47.17 (CH), 61.86 (C-5%), 70.95
(Ca, C-3%), 78.71 (C-2%), 82.60 (C-4%), 85.10 (C-1%), 114.65
(CH2ꢁ), 117.65 (Cg), 122 (Cq), 126.85, 127.85, 132.23,
132.34 (CBz, C-2 or C-8), 135.84, 140.40 (Cb, CHꢁ),
148.38, 150.90 (Cq), 140.25, 151.84 (C-2 or C-8), 148.51,
150.35 (Cq), 164.20, 171.11 (CO); optical rotation: [h]2D0=
−42 (c 1, DCM); MS (IC NH3+): 679 [M+H]+.
Acknowledgements
We thank the Ministe`re de la Recherche et des Nouv-
elles Technologies (MRNT) for financial support and a
Postdoctoral fellowship to P.B.
References
12. (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R.
H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039; (b)
Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org.
Lett. 1999, 1, 953.
1. (a) Bouhss, A.; Josseaume, N.; Severin, A.; Tabei, K.;
Jean-Emmanuel, H.; Schlaes, D.; Mengin-Lecreux, D.;
Van Heijenoort, J.; Arthur, M. J. Biol. Chem. 2002, 277;
(b) Bouhss, A.; Josseaume, N.; Allanic, D.; Crouvoisier,
M.; Gutmann, L.; Mainardi, J. L.; Mengi-Lecreux, D.;
Van Heijenoort, J.; Arthur, M. J. Bacteriol. 2001, 183,
5122.
2. Horton, J. R.; Bostock, J. M.; Chopra, I.; Hesse, S. E. V.;
Adams, D. J.; Johnson, A. P.; Fishwick, C. W. G. Biorg.
Med. Chem. Lett. 2003, 13, 1557.
13. Yamamoto, K.; Biswas, K.; Gaul, C.; Danishefsky, S. J.
Tetrahedron Lett. 2003, 44, 3297.
14. Selected spectral data for compound 9. 9a (Z): H NMR
1
(400 MHz, CDCl3) l: 0.10 (s, 6H, 2×CH3-Si), 0.85 (s, 9H,
tBu), 1.36 (d, 3H, CH3, J 7.0), 2.14–2.41 (m, 4H, 2×CH2),
3.67 (dd, 1H, OCH, J 8, J 10.3), 3.9 (dd, 2H, H-5%, J 3.3,
J 11.6), 4.20 (dd, 1H, CHO, J 4.0, J 10.3), 4.36 (dt, 1H,