5718
F. Louërat et al. / Tetrahedron Letters 50 (2009) 5716–5718
8. (a) Marsais, F.; Granger, P.; Quéguiner, G. J. Org. Chem. 1981, 46, 4494–4497; (b)
Acknowledgment
Francis, R. F.; Howell, H. M.; Fetzer, D. T. J. Org. Chem. 1981, 46, 2213–2215; (c)
Francis, R. F.; Crews, C. D.; Scott, B. S. J. Org. Chem. 1978, 43, 3227–3230.
9. (a) Abramovitch, R. A.; Poulton, G. A. Chem. Commun. 1967, 274–275; (b)
Fraenkel, G.; Copper, J. C. Tetrahedron Lett. 1968, 8, 1825–1830.
10. Uno, H.; Okada, S.; Suzuki, H. J. Heterocycl. Chem. 1991, 28, 341–346.
11. Alexakis, A.; Amiot, F. Tetrahedron: Asymmetry 2002, 13, 2117–2122.
12. Nichols, M. A.; Williard, P. G. J. Am. Chem. Soc. 1993, 115, 1568–1572.
13. (a) Mamane, V.; Louërat, F.; Iehl, J.; Abboud, M.; Fort, Y. Tetrahedron 2008, 64,
10699–10705; (b) Mamane, V.; Aubert, E.; Fort, Y. J. Org. Chem. 2007, 72, 7294–
7300; (c) Mamane, V.; Fort, Y. Tetrahedron Lett. 2006, 47, 2337–2340; (d)
Mamane, V.; Fort, Y. J. Org. Chem. 2005, 70, 8220–8223.
We gratefully acknowledge the CNRS and Nancy Université for
financial support.
Supplementary data
Supplementary data associated with this article can be found, in
14. The use of TMSCl or aldehydes as electrophiles resulted in inseparable complex
mixtures.
15. General experimental procedure: preparation of 1-methyl-4-chloro-isoquinoline
References and notes
3i. To
a solution of isoquinoline 1 (1 g, 7.75 mmol) and DME (0.8 mL,
7.75 mmol) in degassed Et2O (40 mL) at 30 °C, under argon, was added MeLi
(1.6 M in Et2O, 5.8 mL, 9.3 mmol) and the mixture was stirred for 3 h before it
was transferred to a degazed solution of C2Cl6 (3.7 g, 11.62 mmol) in Et2O
(10 mL) at 30 °C. After 2 h of stirring, MeOH (15 mmol, 0.6 mL) was added and
the mixture was stirred under open air for 30 min (complete aromatization
was observed by performing 1H NMR of the crude mixture). The reaction
mixture was extracted with Et2O, washed with water, and dried over MgSO4.
After concentration, the residue was purified by chromatography on silica gel
(hexanes/ethyl acetate 9:1) to give compound 3i as a reddish syrup (580 mg,
42%).1H NMR (200 MHz, CDCl3) d 8.37 (s, 1H), 8.08 (d, J = 8.2 Hz, 1H), 7.99 (d,
J = 8.4 Hz, 1H), 7.71 (t, J = 6.8 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 2.87 (s, 3H); 13C
NMR (50 MHz, CDCl3) d 157.2, 140.0, 133.0, 130.6, 127.8, 127.6, 126.4, 125.7,
123.5, 21.9. MS (EI) m/z 177 (M+, 100%), 142 (26), 115 (45). HRMS m/z calcd for
C10H8ClN: 177.0345, found: 178.0418 (MH+). For analytical data of all other
compounds, see the Supplementary data.
1. Bentley, K. W.. In The Isoquinoline Alkaloids; Harwood Academic: Amsterdam,
1998; Vol. 1.
2. (a) Yoon, T.; De Lombaert, S.; Brodbeck, R.; Gulianello, M.; Chandrasekhar, J.;
Horvath, R. F.; Ge, P.; Kershaw, M. T.; Krause, J. E.; Kehne, J.; Hoffman, D.;
Doller, D.; Hodgetts, K. J. Bioorg. Med. Chem. Lett. 2008, 18, 891–896; (b)
Örtqvist, P.; Peterson, S. D.; Åkerblom, E.; Gossas, T.; Sabnis, Y. A.; Fransson,
R.; Lindeberg, G.; Danielson, U. H.; Karlén, A.; Sandström, A. Bioorg. Med.
Chem. 2007, 15, 1448–1474; (c) Trotter, B. W.; Nanda, K. K.; Kett, N. R.;
Regan, C. P.; Lynch, J. J.; Stump, G. L.; Kiss, L.; Wang, J.; Spencer, R. H.; Kane,
S. A.; White, R. B.; Zhang, R.; Anderson, K. D.; Liverton, N. J.; McIntyre, C. J.;
Beshore, D. C.; Hartman, G. D.; Dinsmore, C. J. J. Med. Chem. 2006, 49, 6954–
6957.
3. (a) Clayden, J.; Fletcher, S. P.; McDouall, J. J. W.; Rowbottom, S. J. M. J. Am. Chem.
Soc. 2009, 131, 5331–5343; (b) Luesse, S. B.; Counceller, C. M.; Wilt, J. C.;
Perkins, B. R.; Johnston, J. N. Org. Lett. 2008, 10, 2445–2447; (c) Li, X.; Kong, L.;
Gao, Y.; Wang, X. Tetrahedron Lett. 2007, 48, 3915–3917.
4. (a) Fang, K.-H.; Wu, L.-L.; Huang, Y.-T.; Yang, C.-H.; Sun, I.-W. Inorg. Chim. Acta
2006, 359, 441–450; (b) Liu, S.-J.; Zhao, Q.; Chen, R.-F.; Deng, Y.; Fan, Q.-L.; Li,
F.-Y.; Wang, L.-H.; Huang, C.-H.; Huang, W. Chem. Eur. J. 2006, 12, 4351–4561;
(c) Zhao, Q.; Liu, S.; Shi, M.; Wang, C.; Yu, M.; Li, L.; Li, F.; Yi, T.; Huang, C. Inorg.
Chem. 2006, 45, 6152–6160.
5. (a) Yang, H. Tetrahedron Lett. 2009, 50, 3081–3083; (b) Sha, F.; Huang, X. Angew.
Chem., Int. Ed. 2009, 48, 3458–3461; (c) Niu, Y.-N.; Yan, Z.-Y.; Gao, G.-L.; Wang,
H.-L.; Shu, W.-Z.; Ji, K.-G.; Liang, Y.-M. J. Org. Chem. 2009, 74, 2893–2896; (d)
Fisher, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Am.
Chem. Soc. 2009, 130, 15720–15725.
6. (a) Giam, C. S.; Stout, J. L. Chem. Commun. 1970, 478; (b) Doyle, P.; Yates, R.
Tetrahedron Lett. 1970, 11, 3371–3374.
7. (a) Zhang, L.-H.; Tan, Z. Tetrahedron Lett. 2000, 41, 3025–3028; (b) Finch, N.;
Gemenden, C. W. J. Org. Chem. 1975, 40, 569–574; (c) Giam, C. S.; Knaus, E. E.;
Pasutto, F. M. J. Org. Chem. 1974, 39, 3565–3568.
16. For a nice application involving this kind of dimer, see: Muraoka, T.; Kinbara,
K.; Takuzo, A. Nature 2006, 440, 512–515.
17. (a) Ref. 8c.; An analogous mechanism was proposed for this dimerization
process in the pyridine series: (b) Giam, C. S.; Knaus, E. E.; Lockhart, R. A.;
Keener, I. G. Can. J. Chem. 1975, 53, 2305–2310; (c) Knaus, E. E.; Ondrus, T. A.;
Giam, C. S. J. Heterocycl. Chem. 1976, 13, 789–792.
18. The use of CBr4 resulted in formation of dimer 3d in both normal addition and
reverse addition.
19. Piperidine or sodium methanolate did not give the expected substitution but
instead we observed the formation of a large amount of 3a probably resulting
from HCl elimination in the dihydro intermediate 4.
20. This product was already isolated by Uno et al. (Ref. 10) but neither the yield
nor a proposed mechanism of its formation was reported.
21. (a) Desmarets, C.; Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67, 3029–3036; (b)
Desmarets, C.; Schneider, R.; Fort, Y. Tetrahedron 2001, 57, 7657–7664;
Desmarets, C.; Schneider, R.; Fort, Y. Tetrahedron Lett. 2001, 42, 247–250.