Table 1. Optimization of the Model Reactiona
Scheme 1. Synthetic Strategies To Form Diaryl Ethers
entry
base
NaH
2 (X)
temp (°C)
time
4 h
yield (%)b
1
2
3
4
5
6
7
2a (OTf)
2a (OTf)
2a (OTf)
2a (OTf)
2b (BF4)
2a (OTf)
2a (OTf)
rt
93
>99
97
NaOH
rt
4 h
t-BuOK
NaOH
rt
4 h
40
40
40
rt
1 h
99
NaOH
1 h
>99
>99
95
t-BuOK
t-BuOK
15 min
2 h
protocols (Scheme 1A).3 Thallium(III)-mediated oxidative
couplings have been employed in natural product
synthesis, although the demand for excess toxic thallium
reagent makes this approach unsuitable for large-scale
reactions.8
a Base (1.1 equiv) and 1a (1.1 equiv) were stirred at 0 °C for 15 min
before addition of salt 2 (1 equiv). b Determined by GC with 1,4-
dimethoxybenzene as internal standard.
Metal-free methods with limited scope include reactions with
benzyne intermediates9 and SNAr additions to electron-poor
aryl halides under mild conditions.10 The synthesis of diaryl
ethers from phenols and diaryliodonium salts was reported
already in the 1950s.11 The reaction employed diaryliodonium
halides and inorganic bases in protic solvents, and required
prolonged reaction times and high temperature to give diaryl
ethers in moderate to good yields.12-14
reactions,17 avoiding the drawbacks of organometallic
chemistry, such as cost, toxicity, and threshold values in
pharmaceutical products.
We and others have developed efficient one-pot routes
to diaryliodonium salts, and these compounds are now
inexpensive and easily available (eq 1).18 We are presently
investigating these selective and nontoxic reagents as elec-
trophilic arylating agents,19 and herein we present our
preliminary results on the arylation of phenols under mild
and racemization-free conditions (Scheme 1B).
The use of diaryliodonium salts has recently gained
considerable attention in organic synthesis.15 Their proper-
ties allow for both metal-catalyzed16 and metal-free
(8) Silva, L. F., Jr; Carneiro, V. M. T. Synthesis 2010, 1059.
(9) Liu, Z.; Larock, R. C. Org. Lett. 2004, 6, 99.
(10) Li, F.; Wang, Q.; Ding, Z.; Tao, F. Org. Lett. 2003, 5, 2169.
(11) Early reports: (a) Beringer, F. M.; Brierley, A.; Drexler, M.;
Gindler, E. M.; Lumpkin, C. C. J. Am. Chem. Soc. 1953, 75, 2708. (b)
Dibbo, A.; Stephenson, L.; Walker, T.; Warburton, W. K. J. Chem.
Soc. 1961, 2645. (c) Crowder, J. R.; Glover, E. E.; Grundon, M. F.;
Kaempfen, H. X. J. Chem. Soc. 1963, 4578. (d) Lubinkowski, J. J.;
Knapczyk, J. W.; Calderon, J. L.; Petit, L. R.; McEwen, W. E. J. Org.
Chem. 1975, 40, 3010.
The previous use of base in refluxing protic solvents is
detrimental to racemization-prone substrates, such as
R-amino acid-substituted phenols that are common in
natural products. We envisioned that a mild arylation
procedure could be developed by using aprotic solvents
and diaryliodonium triflates or tetrafluoroborates, as
salts with those anions are soluble also in less polar
solvents.20
Phenol (1a) and diphenyliodonium triflate (2a) were
chosen as model substrates in the optimization of reaction
conditions yielding diphenyl ether (3a). An initial solvent
screening with NaH as base revealed that DMF, toluene,
THF, and dichloromethane all gave >90% conversion
within 4 h at room temperature, while acetonitrile was less
efficient. Further optimization was performed in THF,
(12) Recent reports: (a) Crimmin, M. J.; Brown, A. G. Tetrahedron
Lett. 1990, 31, 2017 (MeOH or DMF, 95 °C). (b) Huang, X.; Zhu, Q.;
Xu, Y. Synth. Commun. 2001, 31, 2823 (DMF, 100 °C, 10 h). In synthesis
€
of polybrominated ethers:(c) Teclechiel, D.; Sundstrom, M.; Marsh, G.
Chemosphere 2009, 74, 421 (water/dioxane, 80 °C, 3 h). (d) Liu, H.;
Bernhardsen, M.; Fiksdahl, A. Tetrahedron 2006, 62, 3564 (H2O, reflux,
2 h). (e) Marsh, G.; Stenutz, R.; Bergman, A. Eur. J. Org. Chem. 2003,
2566 (H2O/dioxane, 80 °C, 1-8 h). (f) Couladouros, E. A.; Moutsos,
V. I.; Pitsinos, E. N. ARKIVOC 2003, 92 (DMF, 90 °C, 3 h).
(13) Metal-catalyzed reports: (a) Thakur, V. V.; Kim, J. T.; Hamilton,
A. D.; Bailey, C. M.; Domaoal, R. A.; Wang, L.; Anderson, K. S.;
Jorgensen, W. L. Bioorg. Med. Chem. Lett. 2006, 16, 5664. (b) Hickey,
D. M. B.; Leeson, P. D.; Novelli, R.; Shah, V. P.; Burpitt, B. E.; Crawford,
L. P.; Davies, B. J.; Mitchell, M. B.; Pancholi, K. D.; Tuddenham, D.;
Lewis, N. J.; O’Farrell, C. J. Chem. Soc., Perkin Trans. 1 1988, 3103.
(14) Dearomatization of phenols with diaryliodonium salts: Ozanne-
Beaudenon, A.; Quideau, S. Angew. Chem., Int. Ed. 2005, 44, 7065.
(15) (a) Merritt, E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48,
9052. (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (c)
Wirth, T., Ed. Hypervalent Iodine Chemistry; Topics in Current Chemistry,
224; Springer: Berlin, Germany, 2003. (d) Zhdankin, V. V.. Sci. Synth. 2007,
31a, 161.
(18) (a) Bielawski, M.; Olofsson, B. Chem. Commun. 2007, 2521. (b)
Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610.
(c) Bielawski, M.; Aili, D.; Olofsson, B. J. Org. Chem. 2008, 73, 4602. (d)
Zhu, M.; Jalalian, N.; Olofsson, B. Synlett 2008, 592. (e) Merritt, E. A.;
Malmgren, J.; Klinke, F. J.; Olofsson, B. Synlett 2009, 2277. (f)
Bielawski, M.; Olofsson, B. Org. Synth. 2009, 86, 308. (g) Jalalian, N.;
Olofsson, B. Tetrahedron 2010, 66, 5793.
(19) Norrby, P.-O.; Petersen, T. B.; Bielawski, M.; Olofsson, B.
Chem.;Eur. J. 2010, 16, 8251.
(20) The nucleophilicity of the phenoxide was expected to increase in
an aprotic solvent. The previous use of protic solvents is likely due to
insolubility of diaryliodonium halides in aprotic media.
(16) (a) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593. (b)
Deprez, N. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234. (c)
Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(17) (a) Dohi, T.; Ito, M.; Yamaoka, N.; Morimoto, K.; Fujioka, H.;
Kita, Y. Angew. Chem., Int. Ed. 2010, 49, 3334. (b) Kita, Y.; Morimoto,
K.; Ito, M.; Ogawa, C.; Goto, A.; Dohi, T. J. Am. Chem. Soc. 2009, 131,
1668.
Org. Lett., Vol. 13, No. 6, 2011
1553