Ourdesignconcept iscenteredupon the placementof the
catalytically crucial 4-dialkylaminopyridine moiety within
a helicenoidal20 framework. Importantly, this design con-
sideration promised a highly active catalyst by conforma-
tional fixation through ring-fusion of the DMAP core.21,22
A [2 þ 2 þ 2]-cycloisomerization23 of a suitable triyne
would allow for a convergent synthesis, with suitable lipo-
philic functionality assisting solubility.24 The aminopyri-
dine moiety would be desymmetrised by the placement
of π-electron density from a suitable aromatic moiety,
ultimately controlled by the chirality of the helix.
Figure 1. DMAP, planar chiral, and axially chiral DMAP
analogues.
common chirality elements with Fu’s planar chiral 210
and Spivey’s axially chiral 311 designs arguably offering
the most imaginative solutions to this scientific problem
(Figure 1).12 The efficacy of 2 and 3 in contexts such as
the kinetic resolution of chiral alcohols13 mean chiral
DMAP analogues offer themselves as valuable chiral acyla-
tion catalysts, complementing the phosphine,14 oligo-
peptide,15 amidine,16 amidine-ferrocene hybrids,17 and
N-heterocyclic carbene18 catalyst approaches addition-
ally reported in recent years.
Scheme 1. Synthesis of Helicenoidal DMAP 4a
Figure 2. Design concept of helicenoidal DMAP catalyst 4.
a Catalyst 4 was resolved by preparative-scale chiral HPLC, both
enantiomers >99% ee (Chiralpak IC).
As DMAP acts as a genuine molecular challenge to
assess unusual asymmetry elements in catalysis, we have
chosen to examine the feasibility of a DMAP structure
adapted to a helical environment (Figure 2).19
The synthesis of catalyst 4 is outlined in Scheme 1.
Sonogashira reaction of 1-iodo-2-naphthol 5 and TMS-
acetylene with subsequent O-propargylation and in situ
desilylation accessed 6 in an excellent 94% yield. A second
Sonogashira reaction between 6 and iodopyridine 7
formed diyne 8. Triyne 9 was synthesized after sequen-
tial N-propargylation of 8 and Boc deprotection with
telescoped N-methylation. The synthesis of helicenoidal
(10) Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem. Soc. 1997,
119, 1492.
(11) Spivey, A. C.; Fekner, T.; Spey, S. E. J. Org. Chem. 2000, 65,
3154.
(12) For selected references detailing chiral DMAP analogues
founded on point chirality, see: (a) Kawabata, T.; Nagato, M.; Takasu,
K.; Fuji, K. J. Am. Chem. Soc. 1997, 119, 3169. (b) Shaw, S. A.; Aleman,
(20) We use the word helicenoidal to differentiate 4 from bona fide
helicenyl pyridine nucleophilic catalysts with the “oid” suffix used to
clarify the helicene-like nature of 4 as conferred by the break in
aromaticity.
(21) Heinrich, M. R.; Klisa, H. S.; Mayr, H.; Steglich, W.; Zipse, H.
Angew. Chem., Int. Ed. 2003, 42, 4826.
(22) The use of a [6]azahelicene as a nucleophilic catalyst has been
ꢀ
ꢀ
P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 13368. (c) O Dalaigh, C.;
Connon, S. J. J. Org. Chem. 2007, 72, 7066. (d) Yamada, S.; Misono, T.;
Iwai, Y.; Masumizu, A.; Akiyama, Y. J. Org. Chem. 2006, 71, 6872.
(13) (a) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008,
47, 1560. (b) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.
(c) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (d)
Jarvo, E. R.; Miller, S. J. In Comprehensive Asymmetric Catalysis,
Supplement 1; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-
Verlag: Berlin, 2004.
reported. This system was reported to offer moderate selectivity (S = 8
ꢁ
ꢀ
ꢁ
sek, J.;
for 10a) and reactivity (5-25 mol % loading); see: Samal, M.; Mı
´
ꢀ
ꢀ
Stara, I. G.; Stary, I. Collect. Czech. Chem. Commun. 2009, 74, 1151.
(23) For transition-metal-catalyzed [2 þ 2 þ 2]-cycloisomerization
(14) Vedejs, E.; Daugulis, O.; Diver, S. T. J. Org. Chem. 1996, 61, 430.
(15) Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 2001, 123, 6469.
(16) Birman, V. B.; Uffman, E. W.; Hui, J.; Li, X. M.; Kilbane, C. J.
J. Am. Chem. Soc. 2004, 126, 12226.
(17) Hu, B.; Meng, M.; Wang, Z.; Du, W.; Fossey, J. S.; Hu, X.;
Deng, W.-P. J. Am. Chem. Soc. 2010, 132, 17041.
(18) Kano, T.; Sasaki, K.; Maruoka, K. Org. Lett. 2005, 7, 606.
(19) For our work concerning the synthesis of helicenyl carboxylic
acids, see: Pearson, M. S. M.; Carbery, D. R. J. Org. Chem. 2009, 74,
5320.
ꢀ
approaches to helicenoidal (helicene-like) molecules, see: (a) Stara, I. G.;
ꢁ
Alexandrova, Z.; Teply, F.; Sehnal, P.; Stary, I.; Saman, D.; Budesı
ꢀ
ꢀ
ꢀ
ꢁꢁ
ꢀ
nsky,
´
M.; Cvaka, J. Org. Lett. 2005, 7, 2547. (b) Tanaka, K.; Kamisawa, A.;
Suda, T.; Noguchi, K.; Hirano, M. J. Am. Chem. Soc. 2007, 129, 12078.
ꢀ
ꢀ
ꢀ
ꢀ
ꢁ
´
(c) Sehnal, P.; Krausovy, Z.; Teply, F.; Stara, I. G.; Stary, I.; Rulısek, L.;
ꢁ
ꢀꢁ
ꢁ ꢀ
Saman, D.; Carsarova, I. J. Org. Chem. 2008, 73, 2074.
(24) For discussion of homogeneous and heterogeneous reaction
profiles in DMAP catalysed reactions, see: Spivey, A. C.; Arseniyadis,
S. Angew. Chem., Int. Ed. 2004, 43, 5436.
Org. Lett., Vol. 13, No. 5, 2011
1251