940
O. B. SHAWAKATALY ET AL.
activity of the cluster via increase in more hydrogen consump-
tion capacity. Figure 6 shows the PA and ST hydrogenation
activity on complex (3), at different pressure conditions. The flu-
orinated phosphine derivative of tri ruthenium cluster shows the
higher catalytic hydrogenation capacity for styrene with com-
plete selectivity towards ethyl benzene formation. The straight
forward fragmentation catalysis of complex (3) prefers to hy-
drogenate the C C double bond in styrene. Whereas, in the
case of phenyl acetylene hydrogenation occurred by oligomer-
ization of phenyl acetylene, results in hindering the higher cat-
alytic conversion. Hence, complex (3) showed slightly lesser
activity for phenyl acetylene conversion compared to styrene
(Figure 6).
CONCLUSION
Ru3(CO)9-dpam (diphenyl arsino methane) derivatives,
such as complexes (1)–(3) are successfully synthesized by
two step method. The single crystal X-ray diffraction study
confirms their crystal structures. The complex (3) trifluro
triphenyl derivative of Ru3(CO)9-dpam showed the effective
conversion for alkenes and moderate conversion for alkyne,
compared to other complexes(1) and (2). Higher hydrogena-
tion activity was observed by tuning the reaction condition
such as increasing the hydrogen pressure, adopting suitable
toluene solvent in the presence of as prepared Ru-organometallic
complexes.
FIG. 5. Catalytic hydrogenation of Cyclohexene on complex (3) in different
solvent and pressure conditions at fixed reaction time = 5h.
corresponding electron withdrawing and electron donating
groups, attached to the tri ruthenium carbonyl complex
(Table 2). Electron donating group (methyl) strengthens the
ruthenium cluster, and it favors the cluster catalysis, whereas
electron withdrawing group weakens the cluster and favors the
fragmentation catalysis (methoxy).
Figure 5 shows the solvent effect for hydrogenation of cyclo-
hexene in the presence of complex (3) catalyst, at different pres-
sure condition with constant reaction temperature. The higher
hydrogen solubility nature of toluene solvent showed higher
conversion for cyclohexene conversion compared to hexane
solvent. Increase in hydrogen pressure, increases the catalytic
REFERENCES
1. Johnson, B.F.G.; Johnston, R.D.; Josty, P.L.; Lewis, J.; Williams, I.G. Na-
ture 1967, 213, 901.
2. Corey, E.R.; Dahl, L.F. Inorg. Chem. 1964, 521, 1.
3. Candlin, J.P.; Shortland, C. J. Organomet. Chem. 1969, 16, 289
4. Bruce, M.I.; Gaudio, M.; Skelton, B.W.; Werth, A.; White, A.H.Z. Anorg.
Allg. Chem. 2008, 634, 1106.
5. Shawkataly, O.B.; Chong, M.L.; Fun, H.K.; Didierjean, C.; Aubry, A. Acta
Crystallographica Section E, 2006, E62, m168.
6. Bruce, M.I.; Hambley, T.W.; Nicholson, B.K.; Snow, M.R. J. Organomet.
Chem. 1982, 235, 83.
7. Balch, A.L.; Guimerans, R.R.; Linehan, J.; Wood, F.E. Inorg. Chem. 1985,
24, 2021.
8. Sappa, E.; Gambino, O.; Milone, L.; Getini, G. J.Organomet.Chem. 1972,
39, 169.
9. Giordano, R.; Sappa, E. J. Organomet. Chem. 1993, 448, 157.
10. Castiglioni, M.; Giordano, R.; Sappa, E. J. Organomet. Chem. 1995, 491,
111.
11. Cauzzi, D.; Giordano, R.; Sappa, E.; Tiripicchio, A.; Tiripicchio Camellini,
M. J. Cluster. Sci. 1993, 4, 279.
12. Sappa, E.; Knox S.A. R. J. Cluster Sci. 1996, 7, 263.
13. Choi, S.J.; Lee, J.S.; Kim, Y.G. J. Mol. Catal. 1993, 85, L109.
14. Jenner, G.; Bitsi, G. J. Mol. Catal. 1988, 45, 235.
15. Valle, M.; Osella, D.; Vaglio, G.A. Inorg. Chim. Acta. 1976, 20, 213.
16. Vaglio, G.A.; Valle, M. Inorg. Chim. Acta. 1978, 30, 161.
17. Kallinen, K.O.; Pakkanen, T.T.; Pakkanen, T.A. J. Mol. Catal. 1995,
99, 29.
18. Shriver, D.F.; Kaesz, H.D.; Adams, R.D. The Chemistry of Metal Cluster
Complexes. New York: VCH Publishers, 1990, p. 329.
19. King, A.D. Jr.; King, R.B.; Yang, D.B. J. Am. Chem. Soc. 1980, 102,
1028.
FIG. 6. Catalytic hydrogenation of Phenyl acetylene and Styrene on complex
(3) at different pressure condition and reaction time = 5h.