Journal of Medicinal Chemistry
ARTICLE
(16) Taymans, S. E.; Pack, S.; Pak, E.; Torpy, D. J.; Zhuang, Z.;
Stratakis, C. A. Human CYP11B2 (aldosterone synthase) maps to
chromosome 8q24.3. J. Clin. Endocrinol. Metab. 1998, 83, 1033–1036.
(17) Ulmschneider, S.; M€uller-Vieira, U.; Mitrenga, M.; Hartmann,
R. W.; Oberwinkler-Marchais, S.; Klein, C. D.; Bureik, M.; Bernhardt, R.;
Antes, I.; Lengauer, T. Synthesis and evaluation of imidazolylmethyle-
netetrahydronaphthalenes and imidazolylmethyleneindanes: Potent in-
hibitors of aldosterone synthase. J. Med. Chem. 2005, 48, 1796–1805.
(18) Ulmschneider, S.; M€uller-Vieira, U.; Klein, C. D.; Antes,
I.; Lengauer, T.; Hartmann, R. W. Synthesis and evaluation of
(pyridylmethylene)tetrahydronaphthalenes/-indanes and structurally
modified derivatives: potent and selective inhibitors of aldosterone
synthase. J. Med. Chem. 2005, 48, 1563–1575.
(19) Voets, M.; Antes, I.; Scherer, C.; M€uller-Vieira, U.; Biemel, K.;
Barassin, C.; Oberwinkler-Marchais, S.; Hartmann, R. W. Heteroaryl
substituted naphthalenes and structurally modified derivatives: selective
inhibitors of CYP11B2 for the treatment of congestive heart failure and
myocardial fibrosis. J. Med. Chem. 2005, 48, 6632–6642.
(20) Lucas, S.; Heim, R.; Negri, M.; Antes, I.; Ries, C.; Schewe, K. E.;
Bisi, A.; Gobbi, S.; Hartmann, R. W. Novel aldosterone synthase inhibitors
with extended carbocyclic skeleton by a combined ligand-based and
structure-based drug design approach. J. Med. Chem. 2008, 51, 6138–6149.
(21) Voets, M.; Antes, I.; Scherer, C.; M€uller-Vieira, U.; Biemel, K.;
Oberwinkler-Marchais, S.; Hartmann, R. W. Synthesis and evaluation of
heteroaryl-substituted dihydronaphthalenes and indenes: Potent and
selective inhibitors of aldosterone synthase (CYP11B2) for the treat-
ment of congestive heart failure and myocardial fibrosis. J. Med. Chem.
2006, 49, 2222–2231.
(22) (a) Belkina, N. V.; Lisurek, M.; Ivanov, A. S.; Bernhardt, R.
Modelling of three-dimensional structures of cytochromes P450 11B1
and 11B2. J. Inorg. Biochem. 2001, 87, 197–207. (b) Lewis, D. F. V.; Lee-
Robichaud, P. Molecular modelling of steroidogenic cytochromes P450
from families CYP11, CYP17, CYP19 and CYP21 based on the CYP102
crystal structure. J. Steroid Biochem. Mol. Biol. 1998, 66, 217–233. (c)
Krone, N.; Riepe, F. G.; G€otze, D.; Korsch, E.; Rister, M.; Commentz, J.;
Partsch, C.-J.; Gr€otzinger, J.; Peter, M.; Sippell, W. G. Congenital
adrenal hyperplasia due to 11-hydroxylase deficiency: functional char-
acterization of two novel point mutations and a three-base pair deletion
in the CYP11B1 gene. J. Clin. Endocrinol. Metab. 2005, 90, 3724–3730.
(d) Roumen, L. L.; Sanders, M. P. A.; Koen, P.; Hilbers, P. A. J.; Plate, R.;
Custers, E.; de Gooyer, M.; Smits, J. F. M.; Beugels, I.; Emmen, J.;
Ottenheijm, H. C. J.; Leysen, D.; Hermans, J. J. R. Construction of 3D
models of the CYP11B family as a tool to predict ligand binding
characteristics. J. Comput.-Aided Mol. Des. 2007, 21, 455–471.
(23) Ulmschneider, S.; Negri, M.; Voets, M.; Hartmann, R. W. Devel-
opment and evaluation of a pharmacophore model for inhibitors of
aldosterone synthase (CYP11B2). Bioorg. Med. Chem. Lett. 2006, 16, 25–30.
(24) Crabb, T. A.; Soilleux, S. L. Microbiological transformations.
Part 9: Microbiological transformations of 1,2,5,6-tetrahydropyrrolo-
[3,2,1-i,j]-quinolin-4-one and of derivatives of 1,2,3,5,6,7-hexahydro-
pyrido[3,2,1-i,j]quinoline with the fungus Cunninghamella elegans.
Tetrahedron 1986, 42, 5407–5413.
(25) Appukkuttan, P.; Orts, A. B.; Chandran, R., P.; Goeman, J. L.;
van der Eycken, J.; Dehaen, W.; van der Eycken, E. Generation of a small
library of highly electron-rich 2-(hetero)aryl-substituted phenethyla-
mines by the Suzuki-Miyaura reaction: a short synthesis of an
apogalanthamine analogue. Eur. J. Org. Chem. 2004, 3277–3285.
(26) Zhu, H.-F.; Zhao, W.; Okamura, T.; Fan, J.; Sun, W.-Y.;
Ueyama, N. Syntheses and crystal structures of 1D tubular chains and
2D polycatenanes built from the asymmetric 1-(1-imidazolyl)-
4-(imidazol-1-ylmethyl)benzene ligand with metal salts. New J. Chem.
2004, 28, 1010–1018.
(29) (a) Mornet, E.; Dupont, J.; Vitek, A.; White, P. C. Character-
ization of two genes encoding human steroid 11β-hydroxylase [P-
450(11)β]. J. Biol. Chem. 1989, 264, 20961–20967. (b) Kawamoto,
T.; Mitsuuchi, Y.; Toda, K.; Miyahara, K.; Yokoyama, Y.; Nakao, K.;
Hosoda, K.; Yamamoto, Y.; Imura, H.; Shizuta, Y. Cloning of cDNA and
genomic DNA for human cytochrome P-45011β. FEBS Lett. 1990, 296,
345–349. (c) Kawamoto, T.; Mitsuuchi, Y.; Ohnishi, T.; Ichikawa, Y.;
Yokoyama, Y.; Sumimoto, H.; Toda, K.; Miyahara, K.; Kuribayashi, I.;
Nakao, K. Cloning and expression of a cDNA for human cytochrome
P-450aldo as related to primary aldosteronism. Biochem. Biophys. Res.
Commun. 1990, 173, 309–316.
(30) (a) B€ottner, B.; Schrauber, H.; Bernhardt, R. Engineering a
mineralocorticoid- to a glucocorticoid-synthesizing cytochrome P450. J.
Biol. Chem. 1996, 271, 8028–8033. (b) B€ottner, B.; Bernhardt, R.
Changed ratios of glucocorticoid/mineralocorticoids caused by point
mutations in the putative I-helix regions of CYP11B1 and CYP11B2.
Endocr. Res. 1996, 22, 455–561. (c) Curnow, K. M.; Mulatero, P.;
Emeric-Blanchouin, N.; Aupetit-Faisant, B.; Corvol, P.; Pascoe, L. The
amino acid substitutions Ser288Gly and Val320Ala convert the cortisol
producing enzyme, CYP11B1, into an aldosterone producing enzyme.
Nature Struct. Biol. 1997, 4, 32–35. (d) Mulatero, P.; Curnow, K. M.;
Aupetit-Taisant, B.; Foekling, M. Recombinant CYP11B genes encode
enzymes that can catalyze conversion of 11-deoxycortisol to cortisol, 18-
hydroxycortisol, and 18-oxocortisol. J. Clin. Endocinol. Metab. 1998, 83,
3996–4001. (e) B€ottner, B.; Denner, K.; Bernhardt, R. Conferring
aldosterone synthesis to human CYP11B1 by replacing key amino acid
residues with CYP11B2-specific ones. Eur. J. Biochem. 1998, 252, 458–
466. (f) Bechtel, S.; Belkina, N.; Bernhardt, R. The effect of amino acid
substitutions I112P, D147E and K152N in CYP11B2 on the catalytic
activities of the enzyme. Eur. J. Biochem. 2002, 269, 1118–1127.
(31) Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Structural
basis for androgen specificity and estrogen synthesis in human aroma-
tase. Nature 2009, 457, 219–223.
(32) (a) Ksander, G. M.; Meredith, E.; Monovich, L. G.; Papillon, J.;
Firooznia, F.; Hu, Q.-Y. Preparation of condensed imidazole derivatives
for the inhibition of aldosterone synthase and aromatase. PCT Int. Appl.
WO2007024945, 2007. (b) Papillon J.; Ksander, G. M; Hu, Q.-Y.
Preparation of tetrahydroimidazo[1,5-a]pyrazine derivatives as aldos-
terone synthase and/or 11β-hydroxylase inhibitors. PCT Int. Appl.
WO2007139992, 2007. (c) Hu, Q.-Y.; Ksander, G. M. 4-Imidazolyl-
1,2,3,4-tetrahydroquinoline derivatives and their use as aldosterone/11-
beta-hydroxylase inhibitors. PCT Int. Appl. WO2008076860, 2008. (d)
Hu, Q.-Y.; Ksander, G. M. Organic compounds. PCT Int. Appl.
WO2008076862, 2008.
(33) Lucas, S.; Heim, R.; Ries, C.; Schewe, K. E.; Birk, B.; Hartmann,
R. W. In vivo active aldosterone synthase inhibitors with improved selectivity:
lead optimization providing a series of pyridine substituted 3,4-dihydro-1H-
quinolin-2-one derivatives. J. Med. Chem. 2008, 51, 8077–8087.
(34) Ries, C.; Lucas, S.; Heim, R.; Birk, B.; Hartmann, R. W.
Selective aldosterone synthase inhibitors reduce aldosterone formation
in vitro and in vivo. J. Steroid Biochem. Mol. Biol. 2009, 116, 121–126.
(35) (a) Hartmann, R. W.; Heim, R., Lucas, S. 6-Pyridin-3-yl-3,4-
dihydo-1H-quinoline-2-one derivatives and related compounds as inhibi-
tors of the human aldosterone synthase CYP11B2. PCT Int. Appl.
WO2009135651, 2009. (b) Hu, Q.; Hartmann, R. W. Unpublished results.
(36) (a) Denner, K.; Bernhardt, R. Inhibition studies of steroid
conversions mediated by human CYP11B1 and CYP11B2 expressed in
cell cultures. In Oxygen Homeostasis and Its Dynamics, 1st ed.; Ishimura,
Y., Shimada, H., Suematsu, M., Eds.; Springer-Verlag: Tokyo, Berlin,
Heidelberg, NY, 1998; pp 231-236. (b) Denner, K.; Doehmer, J.;
Bernhardt, R. Cloning of CYP11B1 and CYP11B2 from normal human
adrenal and their functional expression in COS-7 and V79 chinese
hamster cells. Endocr. Res. 1995, 21, 443–448.
(27) Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(0)-catalyzed
cross-coupling reaction of alkoxydiboron with haloarenes: a direct
procedure for arylboronic esters. J. Org. Chem. 1995, 60, 7508–7510.
(28) Gotoh, O. Substrate recognition sites in cytochrome P450
family 2 (CYP2) proteins inferred from comparative analyses of amino
acid and coding nucleotide sequences. J. Biol. Chem. 1992, 267, 83–90.
(37) Lamberts, S. W.; Bruining, H. A.; Marzouk, H.; Zuiderwijk, J.;
Uitterlinden, P.; Blijd, J. J.; Hackeng, W. H.; de Jong, F. H. The new
aromatase inhibitor CGS-16949A suppresses aldosterone and cortisol
production by human adrenal cells in vitro. J. Clin. Endocrinol. Metab.
1989, 69, 896–901.
2318
dx.doi.org/10.1021/jm101470k |J. Med. Chem. 2011, 54, 2307–2319