from the corresponding aldehyde. The strategy developed here is
applicable to the synthesis of other types of alkaloids including
the Stemona class of natural products.
This research was supported financially in part by a grant for
The Open Research Center Project and a Grant-in-Aid from the
Ministry of Education, Culture, Sports, Science and Technology
of Japan.
Notes and references
‡ Compound (17) could not be isolated in pure form, unfortunately, due
to the small amount available.
1 (a) W.-H. Lin, Y. Ye and R.-S. Xu, J. Nat. Prod., 1992, 55, 571; (b) R.
A. Pilli and M. C. Ferreira, de Oliveira, Nat. Prod. Rep., 2000, 17, 117
and references cited therein.
2 M. Adams, T. Pacher, H. Greger and R. Bauer, J. Nat. Prod., 2005, 68,
83.
3 B. Brem, C. Seger, T. Pacher, O. Hofer, S. Vajrodaya and H. Greger, J.
Agric. Food Chem., 2002, 50, 6383.
4 D. R. Williams, J. P. Reddy and G. S. Amato, Tetrahedron Lett., 1994,
35, 6417.
5 Total and formal syntheses of (-)- and ( )-stemoamide:(a) A. Kinoshita
and M. Mori, J. Org. Chem., 1996, 61, 8356; (b) P. A. Jacobi and K. Lee,
J. Am. Chem. Soc., 2000, 122, 4295; (c) M. K. Gurjar and D. S. Reddy,
Tetrahedron Lett., 2002, 43, 295; (d) M. P. Sibi and T. Subramanian,
Synlett, 2004, 1211; (e) H. F. Olivo, R. Tovar-Miranda and E. Barraga´n,
J. Org. Chem., 2006, 71, 3287; (f) S. Torssell, E. Wanngren and P. Somfai,
J. Org. Chem., 2007, 72, 4246; (g) R. W. Bates and S. Sridhar, Synlett,
2009, 1979; (h) Synthesis of (-)-9,10-epi-stemoamide: S. K. Khim and
A. G. Schultz, J. Org. Chem., 2004, 69, 7734; (i) Synthesis of the tricyclic
core of stemoamide: N. Bogliotti, P. I. Dalko and J. Cossy, Synlett,
2005, 349; (j) Free-radical approaches to stemoamide and analogues:
N. Bogliotti, P. I. Dalko and J. Cossy, J. Org. Chem., 2006, 71, 9528;
(k) Synthesis of (+)-9a-epi-stemoamide: P. Gao, Z. Tong, H. Hu, P.-F.
Xu, W. Liu, C. Sun and H. Zhai, Synlett, 2009, 2188; (l) Recent review
for the synthesis of Stemona alkaloids: R. Alibe´s and M. Figueredo,
Eur. J. Org. Chem., 2009, 2421.
6 For reviews of SmI2-mediated reaction, see: (a) J. A. Soderquist,
Aldrichim. Acta, 1991, 24, 15; (b) G. A. Molander, Chem. Rev., 1992, 92,
29; (c) G. A. Molander, Org. React., 1994, 46, 211; (d) G. A. Molander
and C. R. Harris, Chem. Rev., 1996, 96, 307; (e) G. A. Molander and
C. R. Harris, Tetrahedron, 1998, 54, 3321; (f) G. A. Molander, Acc.
Chem. Res., 1998, 31, 603; (g) P. G. Steel, J. Chem. Soc., Perkin Trans.
1, 2001, 2727; (h) H. B. Kagan, Tetrahedron, 2003, 59, 10351; (i) D. J.
Edmonds, D. Johnston and D. J. Procter, Chem. Rev., 2004, 104, 3371;
(j) M. Berndt, S. Gross, A. Ho¨lemann and H.-U. Reissig, Synlett, 2004,
422; (k) D. Y. Jung and Y. H. Kim, Synlett, 2005, 3019; (l) K. Gopalaiah
and H. B. Kagan, New J. Chem., 2008, 32, 607; (m) K. C. Nicolaou, S.
P. Ellery and J. S. Chen, Angew. Chem., Int. Ed., 2009, 48, 7140; (n) T.
Nakata, Chem. Rec., 2010, 10, 159; (o) T. Nakata, Chem. Soc. Rev.,
2010, 39, 1955.
Scheme 3 SmI2-promoted coupling of 11 and 18 in the presence of
HMPA.
reaction of 18 in the absence of HMPA furnished a mixture of
12 and 13 in moderate yield, with a ratio of 1 : 0.7. These results
clearly indicated that the stereochemistry at the carbon–carbon
double bond did not affect the stereoselectivity of the product(s)
for the samarium diiodide-promoted coupling and suggested that
the chelation transition model usually observed6m,n in the absence
of HMPA might not be involved in the coupling reaction in the
presence of HMPA.
Although the precise reaction mechanism remained unclear,
the observed stereoselectivity would be rationalized by assuming
that the coupling reaction in the presence of HMPA proceeded
through the most sterically favored diradical transition state (TS-
A), where two functional groups were located in an energetically
preferable diequatorial-like orientation as depicted in Fig. 2. The
strong redox potential of samarium diiodide in the presence of
HMPA10 would make it possible to generate diradicals, as the key
intermediate, as suggested by Matsuda and co-workers.8a
7 T. L. Bouder, L. Viau, J.-P. Gue´gan, O. Maury and H. L. Bozec, Eur. J.
Org. Chem., 2002, 3024.
8 (a) M. Kawatsura, E. Kishi, M. Kito, T. Sakai, H. Shirahama and
F. Matsuda, Synlett, 1997, 479; (b) K. Suzuki, H. Matsukawa, G.
Matsuo, H. Koshino and T. Nakata, Tetrahedron Lett., 2002, 43, 8653;
(c) N. Hori, H. Matsukawa, G. Matsuo, H. Koshino and T. Nakata,
Tetrahedron, 2002, 58, 1853.
9 (a) K. Ando, J. Org. Chem., 1997, 62, 1934; (b) K. Ando, J. Org. Chem.,
1999, 64, 8406.
Fig. 2 Plausible transition state for the stereoselectivity.
In summary, we were able to establish an efficient stereoselective
synthesis of (-)-stemoamide 1 starting from the known lactam 5,
readily accessible from pyroglutamic acid, in eight steps and with
24% overall yield. Our synthesis features a samarium diiodide-
promoted 7-exo-trig cyclization of a ketyl radical generated in situ
10 (a) J. Inanaga, M. Ishikawa and M. Yamaguchi, Chem. Lett., 1987,
16, 1485; (b) E. Hasegawa and D. P. Curran, Tetrahedron Lett., 1993,
34, 1717; (c) F. Machrouhi, B. Hamann, J.-L. Namy and H. B. Kagan,
Synlett, 1996, 633; (d) M. Shabangi and R. A. Flowers Jr., Tetrahedron
Lett., 1997, 38, 1137; (e) M. Shabangi, J. M. Sealy, J. R. Fuchs and R.
A. Flowers Jr., Tetrahedron Lett., 1998, 39, 4429.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 673–675 | 675
©