Chemistry of Materials
ARTICLE
spectrometer in DMSO-d6, using tetramethylsilane as an internal reference,
and peak multiplicity was reported as follows: s, singlet; d, doublet. The
inherent viscosities were determined at 0.5 g/dL concentration using
Tamson TV-2000 viscometer at 30 °C. Gel permeation chromatographic
(GPC) analysis was carried out on a Waters chromatography unit interfaced
with a Waters 2410 refractive index detector. Two Waters 5 μm Styragel
HR-2 and HR-4 columns (7.8 mm I. D. ꢁ 300 mm) were connected in
series with NMP as the eluent at a flow rate of 0.5 mL/min at 40 °C and
were calibrated with polystyrene standards. Thermogravimetric analysis
(TGA) was conducted with a PerkinElmer Pyris 1 TGA. Experiments were
carried out on approximately 6ꢀ8 mg film samples heated in flowing
nitrogen or air (flow rate = 20 cm3/min) at a heating rate of 20 °C/min.
DSC analyses were performed on a PerkinElmer Pyris 1 DSC at a scan rate
of 10 °C/min in flowing nitrogen (20 cm3/min). Electrochemistry was
performed with a CH Instruments 611B electrochemical analyzer. Voltam-
mograms are presented with the positive potential pointing to the left and
with increasing anodic currents pointing downward. Cyclic voltammetry
(CV) was conducted with the use of a three-electrode cell in which ITO
(polymer films area about 0.5 cm ꢁ1.2 cm) was used as a working electrode.
A platinum wire was used as an auxiliary electrode. All cell potentials were
taken by using a homemade Ag/AgCl, KCl (sat.) reference electrode.
Spectroelectrochemical experiments were carried out in a cell built from
a 1 cm commercial UVꢀvisible cuvette using Hewlett-Packard 8453
UVꢀvisible diode array, Jasco V-570 UVꢀvis/NIR, and Hitachi U-4100
UVꢀvisꢀNIR spectrophotometer. The ITO-coated glass slide was used as
the working electrode, a platinum wire as the counter electrode, and an Ag/
AgCl cell as the reference electrode. CE (η) determines the amount of
optical density change (δOD) at a specific absorption wavelength induced as
a function of the injected/ejected charge (Q) which is determined from the
in situ experiments. CE is given by the equation: η=δOD/Q= log[Tb/Tc]/
Q, where η (cm2/C) is the coloration efficiency at a given wavelength, and
Tb and Tc are the bleached and colored transmittance values, respectively.
The thickness of the polyamide thin films was measured by alpha-step
profilometer (Kosaka Lab., Surfcorder ET3000, Japan). Colorimetry mea-
surements were obtained using a Minolta CS-100A Chroma Meter. The
color coordinates are expressed in the CIE 1931 Yxy color spaces.
(c) Rosseinsky, D. R.; Mortimer, R. J. Adv. Mater. 2001, 13, 783. (d)
Somani, P. R.; Radhakrishnan, S. Mater. Chem. Phys. 2003, 77, 117. (e)
Liu, S.; Kurth, D. G.; Mohwald, H.; Volkmer, D. Adv. Mater. 2002,
14, 225. (f) Zhang, T.; Liu, S.; Kurth, D. G.; Faul, C. F. J. Adv. Funct.
Mater. 2009, 19, 642. (g) Maier, A.; Rabindranath, A. R.; Tieke, B. Adv.
Mater. 2009, 21, 959. (h) Motiei, L.; Lahav, M.; Freeman, D.; van der
Boom, M. E. J. Am. Chem. Soc. 2009, 131, 3468. (i) Beaujuge, P. M.;
Reynolds, J. R. Chem. Rev. 2010, 110, 268.
(2) (a) Bach, U.; Corr, D.; Lupo, D.; Pichot, F.; Ryan, M. Adv. Mater.
2002, 14, 845. (b) Dyer, A. L.; Grenier, C. R. G.; Reynolds, J. R. Adv.
Funct. Mater. 2007, 17, 1480. (c) Ma, C.; Taya, M.; Xu, C. Polym. Eng. Sci.
2008, 48, 2224. (d) Beaupre, S.; Breton, A. C.; Dumas, J.; Leclerc, M.
Chem. Mater. 2009, 21, 1504.
(3) (a) Rose, T. L.; D’Antonio, S.; Jillson, M. H.; Kon, A. B.; Suresh,
R.; Wang, F. Synth. Met. 1997, 85, 1439. (b) Franke, E. B.; Trimble, C. L.;
Hale, J. S.; Schubert, M.; Woollam, J. A. J. Appl. Phys. 2000, 88, 5777. (c)
Topart, P.; Hourquebie, P. Thin Solid Films 1999, 352, 243.
(4) (a) Vickers, S. J.; Ward, M. D. Electrochem. Commun. 2005,
7, 389. (b) Schwab, P. F. H.; Diegoli, S.; Biancardo, M.; Bignozzi, C. A.
Inorg. Chem. 2003, 42, 6613. (c) Qi, Y.; Wang, Z. Y. Macromolecules
2003, 36, 3146. (d) Wang, S.; Todd, E. K.; Birau, M.; Zhang, J.; Wan, X.;
Wang, Z. Y. Chem. Mater. 2005, 17, 6388. (e) Qiao, W.; Zheng, J.; Wang,
Y.; Zheng, Y.; Song, N.; Wan, X.; Wang, Z. Y. Org. Lett. 2008, 10, 641. (f)
Zheng, J.; Qiao, W.; Wan, X.; Gao, J. P.; Wang, Z. Y. Chem. Mater. 2008,
20, 6163. (g) Hasanain, F.; Wang, Z. Y. Dyes, Pigments 2009, 83, 95.
(5) (a) Shi, P.; Amb, C. M.; Knott, E. P.; Thompson, E. J.; Liu, D. Y.;
Mei, J.; Dyer, A. L.; Reynolds, J. R. Adv. Mater. 2010, 22, 4949.
(b) Sonmez, G.; Meng, H.; Zhang, Q.; Wudl, F. Adv. Funct. Mater.
2003, 13, 726. (c) Sonmez, G.; Meng, H.; Wudl, F. Chem. Mater. 2004,
16, 574. (d) Li, M.; Patra, A.; Sheynin, Y.; Bendikov, M. Adv. Mater.
2009, 21, 1707. (e) Aubert, P. H.; Argun, A. A.; Cirpan, A.; Tanner,
D. B.; Reynolds, J. R. Chem. Mater. 2004, 16, 2386.
(6) (a) Creutz, C.; Taube, H. J. Am. Chem. Soc. 1973, 95, 1086. (b)
Lambert, C.; Noll, G. J. Am. Chem. Soc. 1999, 121, 8434.
(7) Robin, M.; Day, P. Adv. Inorg. Radiochem. 1967, 10, 247.
(8) Szeghalmi, A. V.; Erdmann, M.; Engel, V.; Schmitt, M.; Amthor,
S.; Kriegisch, V.; Noll, G.; Stahl, R.; Lambert, C.; Leusser, D.; Stalke, D.;
Zabel, M.; Popp, J. J. Am. Chem. Soc. 2004, 126, 7834.
(9) (a) Cheng, S. H.; Hsiao, S. H.; Su, T. X.; Liou, G. S. Macro-
molecules 2005, 38, 307. (b) Liou, G. S.; Hsiao, S. H.; Su, T. X. J. Mater.
Chem. 2005, 15, 1812. (c) Liou, G. S.; Yang, Y. L.; Su, Y. L. O. J. Polym.
Sci., Part A: Polym. Chem. 2006, 44, 2587. (d) Liou, G. S.; Hsiao, S. H.;
Chen, H. W. J. Mater. Chem. 2006, 16, 1831. (e) Liou, G. S.; Hsiao, S. H.;
Huang, N. K.; Yang, Y. L. Macromolecules 2006, 39, 5337. (f) Liou, G. S.;
Chen, H. W.; Yen, H. J. J. Polym. Sci., Part A: Polym. Chem. 2006,
44, 4108. (g) Liou, G. S.; Chen, H. W.; Yen, H. J. Macromol. Chem. Phys.
2006, 207, 1589. (h) Liou, G. S.; Chang, C. W.; Huang, H. M.; Hsiao,
S. H. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2004. (i) Liou, G. S.;
Hsiao, S. H.; Chen, W. C.; Yen, H. J. Macromolecules 2006, 39, 6036. (j)
Liou, G. S.; Yen, H. J. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 6094.
(k) Yen, H. J.; Liou, G. S. J. Polym. Sci., Part A: Polym. Chem. 2009,
47, 1584. (l) Yen, H. J.; Liou, G. S. J. Mater. Chem. 2010, 20, 9886.
(10) (a) Chang, C. W.; Liou, G. S.; Hsiao, S. H. J. Mater. Chem. 2007,
17, 1007. (b) Liou, G. S.; Chang, C. W. Macromolecules 2008, 41, 1667.
(c) Hsiao, S. H.; Liou, G. S.; Kung, Y. C.; Yen, H. J. Macromolecules 2008,
41, 2800. (d) Chang, C. W.; Chung, C. H.; Liou, G. S. Macromolecules
2008, 41, 8441. (e) Chang, C. W.; Liou, G. S. J. Mater. Chem. 2008,
18, 5638. (f) Chang, C. W.; Yen, H. J.; Huang, K. Y.; Yeh, J. M.; Liou,
G. S. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 7937. (g) Yen, H. J.;
Liou, G. S. Chem. Mater. 2009, 21, 4062. (h) Yen, H. J.; Liou, G. S. Org.
Electron 2010, 11, 299. (i) Huang, L. T.; Yen, H. J.; Chang, C. W.; Liou,
G. S. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 4747.
’ ASSOCIATED CONTENT
S
Supporting Information. Two movies of electrochromic
b
switches between neutral and oxidation states. Table: inherent
viscosity, molecular weights, solubility behavior, and thermal
properties. Figure: NMR of monomers, IR of monomers and
polyamide, TGA, DSC traces and CV of polyamides, calculation
of optical switching time of polyamides. This material is available
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: gsliou@ntu.edu.tw.
’ ACKNOWLEDGMENT
The authors are grateful to the National Science Council of the
Republic of China for financial support of this work. And also to
C.-W. Lu of the Instrumentation Center, National Taiwan
University, for CHNS (EA) analysis experiments. C. H. Ho
(11) Yamazaki, N.; Matsumoto, M.; Higashi, F. J. Polym. Sci. Polym.
Chem. Ed. 1975, 13, 1373.
(12) Liou, G. S.; Lin, H. Y. Macromolecules 2009, 42, 125.
’ REFERENCES
(13) Chang, H. W.; Lin, K. H.; Chueh, C. C.; Liou, G. S.; Chen,
W. C. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 4037.
(1) (a) Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electro-
chromism and Electrochromic Devices; Cambridge University Press: Cam-
bridge, U.K., 2007. (b) Mortimer, R. J. Chem. Soc. Rev. 1997, 26, 147.
1882
dx.doi.org/10.1021/cm103552k |Chem. Mater. 2011, 23, 1874–1882