or Pd-mediated intramolecular arylation.7ꢀ9 Substituted
quinolines and indoles are the starting material for calo-
thrixins which involve lithiation,5,10 FriedelꢀCrafts acyla-
tion followed by cyclization,11 and allene-mediated electro-
cyclization.12 Moody and co-workers achieved the synthesis
of calothrixins involving a biomimetic protocol.13
Despite, the many multistep synthesis procedures avail-
able, there remains a need for an efficient route that will
more readily provide diverse calothrixin analogues for
biological screening.
We have recently outlined the synthesis of carbazoles
involving an in situ generated enamine14 as well as a Lewis
acid mediated domino reaction.15 In further continuation
of our work on carbazole alkaloids,16 we report herein a
novel synthesis of calothrixin B and its analogs using a
Lewis acid mediated domino reaction strategy. The meth-
odology involves a Lewis acid mediated cyclization of an
enamine 6 followed by reductive cyclization, hydrolysis,
and oxidation of carbazole 7 to afford the target com-
pound 8 (Scheme 1).
Our synthesis route began with allylic bromination
of 1-phenylsulfonyl-3-acetyl-2-methylindole 914b using an
NBS and a catalytic amount of AIBN in CCl4 at reflux
(Scheme 2). The Lewis acid mediated Arbuzov reaction17
of resulting bromo compound 10 with triethyl phosphite in
the presence of 20 mol % anhydrous ZnBr2 at room
temperature led to phosphonate ester 11. Contrary to
our expectation, the WittigꢀHorner reaction of the phos-
phonate ester 11 with 2-nitrobenzaldehyde using NaH in
dry THF led to the isolation of bis(2-nitrophenyl)vinylene
12. An attempt to control the undesirable condensation
reaction using K2CO3 as a base in THF was also found to
be problematic, providing only the divinylindole 12 as a
major product (Scheme 2).
Scheme 2. WittigꢀHorner Reaction of Phosphonate Ester 11
Scheme 1. Schematic Pathway for Calothrixins
Next, we turned our attention to employing the Wittig
reaction toprocure the required 1-phenylsulfonyl-3-acetyl-
2-(20nitrophenyl)vinylindole. Accordingly, the bromo com-
pound 10 upon refluxing with triphenylphosphine in dry
THF followed by the reaction of resulting phosphonium
salt with K2CO3 in dry DCM at room temperature led to
the isolation of a stable ylide 13. As expected the ylide 13
upon refluxing with 2-nitroaryl aldehydes 14aꢀg in dry
DCM/1,2-DCE furnished 2-nitroarylvinylenes 15aꢀg in
good yields (Scheme 3).
(7) Bhosale, S. M.; Gawade, R. L.; Puranik, V. G.; Kusurkar, R. S.
Tetrahedron Lett. 2012, 53, 2894–2896.
(8) (a) Abe, T.; Ikeda, T.; Yanada, R.; Ishikura, M. Org. Lett. 2011,
13, 3356–3359. (b) Abe, T.; Ikeda, T.; Choshi, T.; Hibino, S.; Hatae, N.;
Toyata, E.; Yanada, R.; Ishikura, M. Eur. J. Org. Chem. 2012, 5018–
5027.
(9) Ramkumar, N.; Nagarajan, R. J. Org. Chem. 2013, 78, 2802–
2807.
(10) Bennasar, M.-L.; Roca, T.; Ferrando, F. Org. Lett. 2006, 8, 561–
564.
(11) (a) Bernardo, P. H.; Chai, C. L. L.; Elix, J. A. Tetrahedron Lett.
2002, 43, 2939–2940. (b) Bernardo, P. H.; Chai, C. L. L. J. Org. Chem.
2003, 68, 8906–8909.
(12) (a) Tohyama, S.; Choshi, T.; Matsumoto, K.; Yamabuki, A.;
Ikegata, K.; Nobuhiro, J.; Hibino, S. Tetrahedron Lett. 2005, 46, 5263–
5264. (b) Yamabuki, A.; Fujinawa, H.; Choshi, T.; Tohyama, S.;
Matsumoto, K.; Ohmura, K.; Nobuhiro, J.; Hibino, S. Tetrahedron
Lett. 2006, 47, 5859–5861.
(13) McErlean, C. S. P.; Sperry, J.; Blake, A. J.; Moody, C. J.
Tetrahedron 2007, 63, 10963–10970.
(14) (a) Mohanakrishnan, A. K.; Balamurugan, R. Tetrahedron Lett.
2005,46, 4045–4048. (b) Sureshbabu, R.; Balamurugan, R.; Mohanakrishnan,
A. K. Tetrahedron 2009, 65, 3582–3591. (c) Sureshbabu, R.; Mohanakrishnan,
A. K. J. Het. Chem. 2012, 49, 913–918.
A subsequent reaction of the 3-acetyl-2-nitroarylviny-
lenes 15aꢀg with DMF DMA in the presence of 50 mol %
3
glycocyamine18 as a catalyst at 100 °C for 3ꢀ4 h followed
by aqueous workup furnished the respective enamines
16aꢀg as yellow/orange solids (Scheme 4).
As a representative case, thermal electrocyclization of
the enamine 16a was carried out in refluxing xylenes
without any success. However, when the electrocycliza-
tion of the enamine 16a was performed with 1 equiv
of ZnBr2 in xylenes at reflux for 24 h following workup,
(15) (a) Dhayalan, V.; Arul Clement, J.; Jagan, R.; Mohanakrishnan,
A. K. Eur. J. Org. Chem. 2009, 4, 531–546. (b) Sureshbabu, R.;
Saravanan, V.; Dhayalan, V.; Mohanakrishnan, A. K. Eur. J. Org.
Chem. 2011, 922–935. (c) Sivasakthikumaran, R.; Nandakumar, M.;
Mohanakrishnan, A. K. J. Org. Chem. 2012, 77, 9053–9071.
(16) Gobi Rajeshwaran, G.; Mohanakrishnan, A. K. Org. Lett. 2011,
13, 1418–1421.
(17) Gobi Rajeshwaran, G.; Nandakumar, M.; Sureshbabu, R.;
Mohanakrishnan, A. K. Org. Lett. 2011, 13, 1270–1273.
(18) Bindal, S.; Kumar, D.; Kommi, D. N.; Bhatiya, S.; Chakraborti,
A. K. Synthesis 2011, 12, 1930–1935.
B
Org. Lett., Vol. XX, No. XX, XXXX