The Journal of Organic Chemistry
NOTE
Tris(p-methoxyphenyl)phosphine (TMPP).17 n-BuLi (1.6 M
in n-hexane, 20.6 mL, 33 mmol) was added to a THF solution (50 mL)
of p-bromoanisole (6.2 g, 33 mmol) at -50 °C. After 30 min of stirring
at the same temperature, phosphorus trichloride (0.87 mL, 10 mmol)
was added at -50 °C, and the mixture was stirred for 3 h at -10 °C. The
mixture was quenched with saturated aq NH4Cl, and usual workup
followed by recrystallization from EtOH yielded the desired phosphine
TMPP (1.93 g, 5.5 mmol, 55%): white solid, Rf = 0.61; mp 132-134 °C
(e) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology;
Wiley: New York, 2009.
(2) (a) Ogoshi, H.; Mizushima, H.; Toi, H.; Aoyama, Y. J. Org. Chem.
1986, 51, 2366–2368. (b) Leuger, J.; Blond, G.; Froehlich, R.; Billard, T.;
Haufe, G.; Langlois, B. R. J. Org. Chem. 2006, 71, 2735–2739.
(3) For recent examples of Michael type reaction of β-trifluoro-
methyl R,β-enones, see:(a) Bariau, A.; Jatoi, W. B.; Calinaud, P.; Troin,
Y.; Canet, J.-L. Eur. J. Org. Chem. 2006, 3421–3433. (b) Esparcieux, C.;
Figueredo, G.; Troin, Y.; Canet, J.-L. Synlett 2008, 1305–1308.
(c) Bheemanapalli, L. N.; Akkinepally, R. R.; Pamulaparthy, S. R. Chem.
Pharm. Bull. 2008, 56, 1342–1348.
1
(n-hexane/EtOAc, 4:1); H NMR 3.79 (s, 9H), 6.84-6.89 (m, 6H),
7.19-7.26 (m, 6H).
General Procedure for Isomerization of Propargylic
Alcohols 1 to R,β-Enones 2d with PhOH in the Presence of
Mitsunobu Reagents. To a THF-toluene (1:1) solution (2 mL) of
the alcohol 1d (0.158 g, 0.60 mmol) were added TMPP (0.256 g,
0.72 mmol), phenol (0.057 g, 0.60 mmol), and 1,10-(azodicarbonyl)-
dipiperidine (ADDP) (0.153 g, 0.60 mmol) at room temperature, and
the mixture was stirred for 3 h at 66 °C. After being cooled to room
temperature, the reaction mixture was passed through a short silica gel
chromatography column (n-hexane/AcOEt, 6:1). The solvent was
removed under reduced pressure, and the residue was purified by silica
gel chromatography (n-hexane/AcOEt, 30:1) to afford 2d (0.0805 g,
0.306 mmol, 51%): colorless oil; Rf = 0.55 (n-hexane/EtOAc, 4:1);
1H NMR (300 MHz, CDCl3) 2.90 (t, J = 6.0 Hz, 2H), 3.80 (t, J = 6.0 Hz,
2H), 4.52 (s, 2H), 6.61 (dq, J = 16.2, 6.3 Hz, 1H), 6.75 (dq, J = 15.9, 1.8
Hz, 1H), 7.26-7.38 (m, 5H); 13C NMR (75.5 MHz, CDCl3) 42.0, 64.9,
73.4, 122.5 (q, J = 269.8 Hz), 127.7, 127.8, 128.5 128.9 (q, J = 35.4 Hz),
134.3 (q, J = 5.6 Hz), 137.9, 196.5; 19F NMR (283 MHz, CDCl3) -
66.55 (d, J = 6.8 Hz); IR (neat) 630, 699, 741, 972, 1029, 1135, 1181,
1276, 1304, 1368, 1455, 1662, 1714, 2869 cm-1; HRMS (FAB) m/z
calcd for C13H14F3O2 [M þ H]þ 259.0946, found 259.0934.
(E)-5,5,5-Trifluoro-1-(methoxymethoxy)-1-phenylpent-3-
en-2-one (2f): 71% yield; colorless oil; Rf = 0.57 (n-hexane/EtOAc,
4:1, v/v); 1H NMR 3.37 (s, 3H), 4.72 (d, J = 6.9 Hz, 1H), 4.75 (d, J = 6.9
Hz, 1H), 5.25 (s, 1H), 6.71 (dq, J = 15.6, 6.6 Hz, 1H), 6.75 (dq, J = 15.6,
2.1 Hz, 1H), 7.32-7.41 (m, 5H); 13C NMR 56.3, 83.2, 95.5, 122.4 (q, J =
267.3 Hz), 127.3, 129.1, 129.2, 129.9 (q, J = 35.3 Hz), 130.1 (q, J = 5.6
Hz), 134.3, 194.5; 19F NMR -66.57 (d, J = 6.8 Hz); IR (neat) 617, 701,
748, 920, 974, 1039, 1135, 1215, 1275, 1307, 1454, 1496, 1656, 1715,
2896, 2954 cm-1; HRMS (FAB) m/z calcd for C13H14F3O3 [M þ H]þ
275.0895, found 275.0860.
(4) Nineham, A. W.; Raphael, R. A. J. Chem. Soc. 1949, 118–121.
(5) Base-catalyzed isomerization of electron-deficient R-arylpro-
pargylic alcohols into R,β-enones: (a) Ichikawa, T.; Mizuta, T.; Hagiwara,
K.; Aikawa, T.; Kudo, T.; Saito, S. J. Org. Chem. 2003, 68, 3702–3705.
(b) Sonye, J. P.; Koide, K. Org. Lett. 2006, 8, 199–202. (c) Sonye, J. P.;
Koide, K. J. Org. Chem. 2006, 71, 6254–6257. (d) Sonye, J. P.; Koide, K.
Synth. Commun. 2006, 36, 599–602. (e) Sonye, J. P.; Koide, K. J. Org. Chem.
2007, 72, 1846–1848. (f) Yamazaki, T.; Kawasaki-Takasuka, T.; Furuta, A.;
Sakamoto, S. Tetrahedron 2009, 65, 5945–5948. (g) Erenler, R.; Uno, M.;
Goud, T. V.; Biellamann, J.-F. J. Chem. Res. 2009, 459–464.
(6) For recent transition-metal-catalyzed isomerization, see: (a)
Tanaka, K.; Shoji, T.; Hirano, M. Eur. J. Org. Chem. 2007, 2687–2699.
(b) Trost, B. M.; Livingston, R. C. J. Am. Chem. Soc. 2008, 130,
11970–11978. (c) Cadierno, V.; Pascale, C.; García-Garrido, S. E.;
Gimeno, J. Dalton Trans. 2010, 39, 4015–4031.
(7) Yamazaki, T.; Ichige, T.; Kitazume, T. Org. Lett. 2004, 6, 4073–
4076.
(8) (a) Mitsunobu, O. Synthesis 1981, 1–28. For recent reviews of
Mitsunobu reaction, see:(b) Dandapani, S.; Curran, D. P. Chem.—Eur. J.
2004, 10, 3130–3138. (c) But, T. Y. S.; Toy, P. H. Chem. Asian J. 2007,
2, 1340–1355. (d) Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.;
Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551–2651.
(9) (a) Huisgen, R. In The Adventure Playground of Mechanisms and
Novel Reactions: Profiles, Pathways and Dreams; Seeman, J. I., Ed.;
American Chemical Society: Washington, DC, 1994; p 62. (b) Huisgen,
R.; Blaschke, H.; Brunn, E. Tetrahedron Lett. 1966, 405–409. (c) Brunn,
E.; Huisgen, R. Angew. Chem., Int. Ed. Engl. 1969, 8, 513–515.
(10) For a recent example of nucleophilic reaction of Huisgen
zwitterion to carbonyl compounds, see: Nair, V.; Biju, A. T.; Mathew,
S. C.; Babu, B. P. Chem. Asian J. 2008, 3, 810–820.
(11) For Mitsunobu reactions using 1,10-(azodicarbonyl)dipi-
peridine, see: (a) Tsunoda, T.; Yamamiya, Y.; Ito, S. Tetrahedron Lett.
1993, 34, 1639–1642. (b) Tsunoda, T.; Otsuka, J.; Yamamiya, Y.; Ito, S.
Chem. Lett. 1994, 539–542.
’ ASSOCIATED CONTENT
(12) For examples of the transformation of dialkoxytrialkylpho-
sphoranes to phosphine oxides and ethers, see: (a) Bartlett, P. D.;
Landis, M. E.; Shapiro, M. J. J. Org. Chem. 1977, 27, 1661–1662.
(b) Balci, M. Chem. Rev. 1981, 81, 91–108.
(13) (a) Bumgardner, C. L.; Bunch, J. E.; Whangbo, M.-H. Tetra-
hedron Lett. 1986, 27, 405–409. (b) Bumgardner, C. L.; Bunch, J. E.;
Whangbo, M.-H. J. Org. Chem. 1986, 51, 4082–4083.
(14) Shinohara, N.; Haga, J.; Yamazaki, T.; Kitazume, T.; Nakamura,
S. J. Org. Chem. 1995, 60, 4363–4374.
(15) Watanabe, Y.; Yamazaki, T. J. Fluorine Chem. 2010,
S
Supporting Information. Experimental procedures
b
and characterization data for all new prepared compounds.
This material is available free of charge via the Internet at
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: tyamazak@cc.tuat.ac.jp.
131, 646–651.
(16) Yamazaki, T.; Yamamoto, T.; Ichihara, R. J. Org. Chem. 1995,
71, 6251–6253.
’ ACKNOWLEDGMENT
(17) Ye, D. Z. B.; Ho, D. G.; Gao, R.; Selke, M. Tetrahedron 2006,
62, 10729–10733.
The generous gift of 2-bromo-3,3,3-trifluoropropene by Tosoh
F-Tech, Inc., is greatly acknowledged.
’ REFERENCES
(1) (a) Kitazume, T.; Yamazaki, T. Experimental Methods in Organic
Fluorine Chemistry; Kodansha: Tokyo, 1998. (b) Hiyama, T. Organo-
fluorine Compounds: Chemistry and Applications; Springer: Berlin, 2000.
(c) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214–231.
(d) Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, 2006.
1960
dx.doi.org/10.1021/jo102503s |J. Org. Chem. 2011, 76, 1957–1960