ACS Catalysis
Letter
Notes
We further investigated the transformation of bicyclic
The authors declare no competing financial interest.
bissilylfuran 6b and monosilylfuran 8a (Scheme 3). Upon
ACKNOWLEDGMENTS
Scheme 3. Transformations of 2-Silylfuran Products 6b and
8a
■
a
This research is partially supported by the Platform Project for
Supporting in Drug Discovery and Life Science Research
(Platform for Drug Discovery, Informatics, and Structural Life
Science) from the Ministry of Education, Culture, Sports,
Science (MEXT) and Japan Agency for Medical Research and
development (AMED).
REFERENCES
■
(1) (a) Adam, W.; Rodriguez, A. Tetrahedron Lett. 1981, 22, 3505−
3508. (b) Goldsmith, D.; Liotta, D.; Saindane, M.; Waykole, L.;
Bowen, P. Tetrahedron Lett. 1983, 24, 5835−5838. (c) Katsumura, S.;
Hori, K.; Fujiwara, S.; Isoe, S. Tetrahedron Lett. 1985, 26, 4625−4628.
(2) (a) Denmark, S. E.; Baird, J. D. Chem. - Eur. J. 2006, 12, 4954−
4963. (b) Matsuda, S.; Takahashi, M.; Monguchi, D.; Mori, A. Synlett
2009, 2009, 1941−1944.
(3) (a) Aquila, B. M. Tetrahedron Lett. 1997, 38, 2795−2798.
(b) Arcadi, A.; Cacchi, S.; Di Giuseppe, S.; Fabrizi, G.; Marinelli, F.
Synlett 2002, 2002, 453−457. (c) Melzig, L.; Rauhut, C. B.; Knochel,
P. Chem. Commun. 2009, 3536−3538.
a
Reagents and conditions: (a) TBAF (1 M in THF, 2.0 equiv for 6b or
1.0 equiv for 8a), rt; (b) NIS (1.1 equiv), KF (1.1 equiv), MeCN, 50
°C; (c) AcCl (1.1 equiv), ZnCl2 (1.1 equiv), CH2Cl2, 30 °C; (d) CO2
(1 atm), CsF (2.0 equiv), DMF, 100 °C, then MeI (2.0 equiv), rt.
(4) (a) Sasaki, T.; Nakanishi, A.; Ohno, M. J. Org. Chem. 1982, 47,
3219−3224. (b) Gill, M. Tetrahedron 1984, 40, 621−626. (c) Aikawa,
K.; Hioki, Y.; Mikami, K. Chem. - Asian J. 2010, 5, 2346−2350.
(5) (a) Devarie-Baez, N. O.; Kim, W.-S.; Smith, A. B., III; Xian, M.
Org. Lett. 2009, 11, 1861−1864. (b) Das, M.; O’Shea, D. F. J. Org.
Chem. 2014, 79, 5595−5607. (c) Das, M.; O’Shea, D. F. Org. Lett.
2015, 17, 1962−1965.
treatment with TBAF at room temperature, 6b and 8a
underwent complete protodesilylation within 5 min, affording
the corresponding bicyclic furans 9 and 12 in high yields. As
iodofurans are valuable building blocks for cross-coupling
reactions, iododesilylation was attempted using NIS and KF in
MeCN at 50 °C.3b Consequently, substitution of one of the
two silyl groups selectively occurred in 6b to afford
iodosilylfuran 10 in 74% yield. In the same manner, iodofuran
13 was obtained in 78% yield from 8a. Friedel−Crafts acylation
of 6b using acetyl chloride and ZnCl2 in CH2Cl2 at 30 °C4a
resulted in the formation of the mono acylation product 11 in
48% yield. Carboxylation of silylfuran 8a was also carried out
under a CO2 atmosphere in the presence of CsF at 100 °C,18
affording 14 in 85% yield after methylation of the carboxylate
intermediate.
In summary, we have developed a new method for the
synthesis of bicyclic 2-silylfurans from silyldiynes via
ruthenium-catalyzed transfer oxygenative [2 + 2 + 1]
cycloaddition. Readily available nitrones were used as the
oxygen atom donors, and were found to be superior to DMSO.
The reaction of unsymmetrical diynes containing one silyl
terminal group can tolerate sterically demanding silyl groups,
such as triethylsilyl, dimethylphenylsilyl, tert-butyldimethylsilyl,
triisopropylsilyl, and triphenylsilyl groups. To demonstrate the
synthetic potential of this method, bissilyl- and monosilylfurans
were transformed into various bicyclic furans, which could not
be obtained directly from the corresponding diyne precursors.
́
(6) (a) Lukevits, E.; Demicheva, L. Chem. Heterocycl. Compd. 1993,
29, 243−267. (b) Ignatovich, L.; Romanovs, V.; Shestakova, I.;
Domrachova, I.; Popelis, J.; Lukevics, E. Chem. Heterocycl. Compd.
2009, 45, 1441−1448. (c) Ignatovich, L.; Muravenko, V.; Shestakova,
I.; Domrachova, I.; Popelis, J.; Lukevics, E. Appl. Organomet. Chem.
2010, 24, 158−161.
(7) (a) Rim, C.; Son, D. Y. Macromolecules 2003, 36, 5580−5584.
(b) Bendikov, M.; Gidron, O.; Sheynin, Y. PCT International
Application No. 061019, 2014. (c) Tamano, M.; Chisaka, J.;
Watanabe, M. Japan Patent Kokai No. 78702, 2014.
(8) (a) Cheng, C.; Hartwig, J. F. Science 2014, 343, 853−857.
(b) Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.;
Grubbs, R. H. Nature 2015, 518, 80−84. (c) Sharma, R.; Kumar, R.;
Kumar, I.; Singh, B.; Sharma, U. Synthesis 2015, 47, 2347−2366.
(9) (a) Dudnik, A. S.; Xia, Y.; Li, Y.; Gevorgyan, V. J. Am. Chem. Soc.
2010, 132, 7645−7655. (b) Cui, X.; Xu, X.; Wojtas, L.; Kim, M. M.;
Zhang, X. P. J. Am. Chem. Soc. 2012, 134, 19981−19984. (d) Padwa,
A.; Zou, Y. J. Org. Chem. 2015, 80, 1802−1808.
(10) Yamashita, K.; Yamamoto, Y.; Nishiyama, H. J. Am. Chem. Soc.
2012, 134, 7660−7663.
(11) Palladium-catalyzed [2 + 2 + 1] furan synthesis has been
reported, see: (a) Wang, A.; Jiang, H.; Xu, Q. Synlett 2009, 2009, 929−
932. (b) Wen, Y.; Zhu, S.; Jiang, H.; Wang, A.; Chen, Z. Synlett 2011,
2011, 1023−1027.
(12) For recent reviews, see: (a) Xiao, J.; Li, X. Angew. Chem., Int. Ed.
2011, 50, 7226−7236. (b) Yang, J. Synlett 2012, 23, 2293−2297.
(c) Stecko, S.; Furman, B.; Chmielewski, M. Tetrahedron 2014, 70,
7817−7844. (d) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115,
5366−5412. For selected recent examples, see: (e) Zhang, Z.-M.;
Chen, P.; Li, W.; Niu, Y.; Zhao, X.-L.; Zhang, J. Angew. Chem., Int. Ed.
2014, 53, 4350−4354. (f) Pagar, V. V.; Liu, L.-S. Angew. Chem., Int. Ed.
2015, 54, 4923−4926. (g) Dateer, R. B.; Chang, S. J. Am. Chem. Soc.
2015, 137, 4908−4911. (h) Suneel Kumar, C. V. S.; Ramana, C. V.
Org. Lett. 2015, 17, 2870−2873.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental details, characterization data for all new
compounds, and NMR charts (PDF)
(13) (a) Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem., Int. Ed. 2008,
47, 7040−7043. (b) Wang, C.; Wang, D.; Yan, H.; Wang, H.; Pan, B.;
Xin, X.; Li, X.; Wu, F.; Wan, B. Angew. Chem., Int. Ed. 2014, 53,
11940−11943.
AUTHOR INFORMATION
Corresponding Author
■
6471
ACS Catal. 2015, 5, 6468−6472