the most popular technique for peptide synthesis. To
circumvent the instability of the thioester group in the
presence of bases, additives such as hydroxybenzotriazole
(HOBt) were used in combination with piperidine or other
bases to remove the Fmoc group on thioester-linked
peptidyl resin.7a,b Alternately, various methods introduce
the thioester functionality after the peptide elongation
step. This can be done either on the solid phase,8a-e during
the cleavage from the solid support,9 in solution or in situ
during NCL.9c,10 In particular, N,S-acyl shift-based meth-
ods have gained increasing importance recently for peptide
thioester synthesis,8c,9d,10b,10e,10j,10k or for designing novel
native ligation methods relying on the in situ generation of
peptide thioesters.10a,d,g-i,l,11
Scheme 1. Conversion of Bis(2-sulfanylethyl)amido Peptides
1a-d into Thiazolidine Thioesters 3a-d in the Presence of
Glyoxylic Acid
Previous works have often targeted the synthesis of
peptide thioesters derived from 3-mercaptopropionic acid
or other simple alkylthiols.2,6,11 A significant advance in
the field would be to create a novel peptide thioester
scaffold with enhanced reactivity in NCL compared to
3-mercaptopropionic acid-thioesters, to facilitate ligation
at encumbered residues. The use of Fmoc-SPPS to access
these peptide thioesters would be a plus.
thiazolidine thioesters compared to 3-mercaptopropionic
acid-thioester analogues.
We describe hereinafter a potential solution to these
highly challenging goals. First we describe a simplemethod
for the generation of thioesters 3 featuring a thiazolidine
moietyon the thiol handle (Scheme 1). Bis(2-sulfanylethyl)-
amido (SEA) peptides 1 at the basis of the method
described here are easily synthesized by using Fmoc-
SPPS.10a,l Second, we report that a significant increase in
Native Chemical Ligation (NCL) rate was observed with
Peptides 1 used in this study (Scheme 1) were synthesized
on the solid phase by using a supported bis(2-sulfanylethyl)-
amino reagent as described elsewhere.10a In brief, this
solid support, which features a bis(2-sulfanylethyl)amino
moiety linked to a trityl polystyrene resin through both
sulfur atoms, is fully compatible with standard automated
Fmoc-SPPS. Deprotection and cleavage of the peptide
from the resin furnished peptide amides 1. To avoid any
interference of peptide amide 1-peptide thioester 2 equili-
brium during purification, 1 was converted into the cyclic
disulfide 4 by air oxidation in basic medium.
The method described in Scheme 1 is based on the
interconversion between amide form 1 and thioester form
2. Formation of thioester 2, which is detected only below
pH 4 by RP-HPLC, is driven by the protonation of the
amino group within the thiol handle. Thioester 2 is the
major speciebelow pH∼3 for Ala, Tyr, and Val analogues,
and below pH ∼2 for Gly derivative.10a
(7) (a) Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept. Sci.
2000, 6, 225. (b) Li, X.; Kawakami, T.; Aimoto, S. Tetrahedron Lett.
1998, 39, 8669.
(8) (a) Alsina, J.; Yokum, T. S.; Albericio, F.; Barany, G. J. Org.
Chem. 1999, 64, 8761. (b) Brask, J.; Albericio, F.; Jensen, K. J. Org. Lett.
2003, 5, 2951. (c) Ollivier, N.; Behr, J. B.; El-Mahdi, O.; Blanpain, A.;
Melnyk, O. Org. Lett. 2005, 7, 2647. (d) Gross, C. M.; Lelievre, D.;
Woodward, C. K.; Barany, G. J. Pept. Res. 2005, 65, 395. (e) Tulla-
Puche, J.; Barany, G. J. Org. Chem. 2004, 69, 4101.
(9) (a) Ingenito, R.; Bianchi, E.; Fattori, D.; Pessi, A. J. Am. Chem.
Soc. 1999, 121, 11369. (b) Ohta, Y.; Itoh, S.; Shigenaga, A.; Shintaku, S.;
Fujii, N.; Otaka, A. Org. Lett. 2006, 8, 467. (c) Blanco-Canosa, J. B.;
Dawson, P. E. Angew. Chem., Int. Ed. 2008, 47, 6851. (d) Nagaike, F.;
Onuma, Y.; Kanazawa, C.; Hojo, H.; Ueki, A.; Nakahara, Y.; Nakahara,
Y. Org. Lett. 2006, 8, 4465. (e) Swinnen, D.; Hilvert, D. Org. Lett. 2000,
2, 2439. (f) Sewing, A.; Hilvert, D. Angew. Chem., Int. Ed. 2001, 40, 3395.
(g) Tofteng, A. P.; Sorensen, K. K.; Conde-Frieboes, K. W.; Hoeg-
Jensen, T.; Jensen, K. J. Angew. Chem., Int. Ed. 2009, 48, 7411. (h)
Mende, F.; Beisswenger, M.; Seitz, O. J. Am. Chem. Soc. 2010, 132,
11110. (i) Quaderer, R.; Hilvert, D. Org. Lett. 2001, 3, 3181.
(10) (a) Ollivier, N.; Dheur, J.; Mhidia, R.; Blanpain, A.; Melnyk, O.
Org. Lett. 2010, 12, 5238. (b) Tsuda, S.; Shigenaga, A.; Bando, K.;
Otaka, A. Org. Lett. 2009, 11, 823. (c) Botti, P.; Villain, M.; Manganiello,
S.; Gaertner, H. Org. Lett. 2004, 6, 4861. (d) Kawakami, T.; Aimoto, S.
Tetrahedron 2009, 65, 3871. (e) Hojo, H.; Onuma, Y.; Akimoto, Y.;
Nakahara, Y.; Nakahara, Y. Tetrahedron Lett. 2007, 48, 25. (f) Warren,
J. D.; Miller, J. S.; Keding, S. J.; Danishefsky, S. J. J. Am. Chem. Soc.
2004, 126, 6576. (g) Kawakami, T.; Aimoto, S. Chem. Lett. 2007, 36, 76.
(h) Kawakami, T.; Aimoto, S. Tetrahedron Lett. 2007, 48, 1903. (i)
Kawakami, T.; Aimoto, S. Adv. Exp. Med. Biol. 2009, 611, 117. (j)
Nakamura, K.; Mori, H.; Kawakami, T.; Hojo, H.; Nakahara, Y.;
Aimoto, S. Int. J. Pept. Res. Ther. 2007, 13, 191. (k) Nakamura, K.;
Kanao, T.; Uesugi, T.; Hara, T.; Sato, T.; Kawakami, T.; Aimoto, S. J.
Pept. Sci. 2009, 15, 731. (l) Hou, W.; Zhang, X.; Li, F.; Liu, C. F. Org.
Lett. 2011, 13, 386.
To displace efficiently the equilibrium between 1 and 2
toward a stable thioester form, we envisaged blocking the
β-aminothiol moiety within 2 by forming a thiazolidine
ring in the presence of an aldehyde. Indeed, thiazolidine
ligation between cysteinyl peptides and aldehyde deriva-
tives is a robust ligation method that proceeds efficiently
below pH 4,12 i.e., at a pH where the fraction of thioester
form 2 is significant. This chemistry has met a lot of success
with glyoxylic acid derivatives as the aldehyde partners,
due to high reactivity and compatibility with peptides and
other biomolecules.13
Toward this goal, peptides 4a-d were reduced back to
peptide amides 1 with zinc at pH 1 and simply filtered to
remove excess zinc.14 At pH 1, thioester form 2 is the major
species.10a Thus, thiazolidine formation was carried out at
(12) Liu, C. F.; Tam, J. P. Proc. Natl. Acad. Sci. U.S.A. 1994, 91,
6584.
(13) Melnyk, O.; Fehrentz, J. A.; Martinez, J.; Gras-Masse, H.
Biopolymers 2000, 55, 165.
(11) For a recent application of 3-mercaptopropionic acid-thioesters
see: Erlich, L. A.; Kumar, K. S.; Haj-Yahya, M.; Dawson, P. E.; Brik, A.
Org. Biomol. Chem. 2010, 8, 2392.
Org. Lett., Vol. 13, No. 6, 2011
1561