Organic Letters
Letter
On the basis of these results and the literature precedents, a
plausible catalytic cycle is depicted in Scheme 7. Alkyne 2a is
ACKNOWLEDGMENTS
■
The authors thank the National Natural Science Foundation of
China (21502100) and Guangdong Natural Science Funds for
Distinguished Young Scholar (2017A030306031) for financial
support of this study.
Scheme 7. Mechanistic Studies
REFERENCES
■
(1) (a) Mugnaini, C.; Pasquini, S.; Corelli, F. Curr. Med. Chem. 2009,
16, 1746. (b) Chang, Y. H.; Hsu, M. H.; Wang, S. H.; Huang, L. J.; Qian,
K.; Morris-Natschke, S. L.; Hamel, E.; Kuo, S. C.; Lee, K. H. J. Med.
Chem. 2009, 52, 4883. (c) Chou, L. C.; Tsai, M. T.; Hsu, M. H.; Wang, S.
H.; Way, T. D.; Huang, C. H.; Lin, H. Y.; Qian, K. D.; Dong, Y. Z.; Lee,
K. H.; Huang, L. J.; Kuo, S. C. J. Med. Chem. 2010, 53, 8047. (d) Huse,
H.; Whiteley, M. Chem. Rev. 2011, 111, 152. (e) Chen, C. T.; Hsu, M.
H.; Cheng, Y. Y.; Liu, C. Y.; Chou, L. C.; Huang, L. J.; Wu, T. S.; Yang, X.
M.; Lee, K. H.; Kuo, S. C. Eur. J. Med. Chem. 2011, 46, 6046. (f) Greeff,
J.; Joubert, J.; Malan, S. F.; van Dyk, S. Bioorg. Med. Chem. 2012, 20, 809.
(g) Dhiman, R.; Sharma, S.; Singh, G.; Nepali, K.; Singh Bedi, P. Arch.
Pharm. 2013, 346, 7. (h) Zhi, Y.; Gao, L. X.; Jin, Y.; Tang, C. L.; Li, J. Y.;
Li, J.; Long, Y. Q. Bioorg. Med. Chem. 2014, 22, 3670. (i) Krishnamurthy,
M.; Gooch, B. D.; Beal, P. A. Org. Lett. 2004, 6, 63. (j) Krishnamurthy,
M.; Simon, K.; Orendt, A. M.; Beal, P. A. Angew. Chem., Int. Ed. 2007, 46,
7044.
(2) (a) Niementowski, S. Ber. Dtsch. Chem. Ges. 1894, 27, 1394.
(b) Alexandre, F. R.; Berecibar, A.; Besson, T. Tetrahedron Lett. 2002,
43, 3911.
(3) (a) Reitsema, R. H. Chem. Rev. 1948, 43, 43. (b) Brouet, J. C.; Gu,
S.; Peet, N. P.; Williams, J. D. Synth. Commun. 2009, 39, 1563.
(c) Romek, A.; Opatz, T. Eur. J. Org. Chem. 2010, 2010, 5841.
(4) (a) Camps, R. Ber. Dtsch. Chem. Ges. 1899, 32, 3228. (b) Jones, C.
P.; Anderson, K. W.; Buchwald, S. L. J. J. Org. Chem. 2007, 72, 7968.
(c) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani, M.; Larsen, R. D.; Faul,
M. M. Org. Lett. 2008, 10, 2609.
(5) (a) Zhao, T. K.; Xu, B. Org. Lett. 2010, 12, 212. (b) Okamoto, N.;
Takeda, K.; Ishikura, M.; Yanada, R. J. Org. Chem. 2011, 76, 9139.
(c) Hu, W.; Lin, J.-P.; Song, L.-R.; Long, Y.-Q. Org. Lett. 2015, 17, 1268.
(d) Åkerbladh, L.; Nordeman, P.; Wejdemar, M.; Odell, L. R.; Larhed,
M. J. Org. Chem. 2015, 80, 1464. (e) Hu, W.; Lin, J.-P.; Song, L.-R.; Long,
Y.-Q. Org. Lett. 2015, 17, 1268.
(6) (a) Samanta, R.; Matcha, K.; Antonchick, A. P. Eur. J. Org. Chem.
2013, 2013, 5769. (b) Li, C. J. Acc. Chem. Res. 2009, 42, 335. (c) Yeung,
C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (d) Girard, S. A.;
Knauber, T.; Li, C. J. Angew. Chem., Int. Ed. 2014, 53, 74.
(7) (a) Jones, C. P.; Anderson, K. W.; Buchwald, S. L. J. Org. Chem.
2007, 72, 7968. (b) Deng, Y.; Gong, W.; He, J.; Yu, J.-Q. Angew. Chem.,
Int. Ed. 2014, 53, 6692. (c) Huang, J.; Chen, Y.; King, A. O.; Dilmeghani,
M.; Larsen, R. D.; Faul, M. M. Org. Lett. 2008, 10, 2609. (d) Torii, S.;
Okumoto, H.; Xu, L. H. Tetrahedron Lett. 1991, 32, 237. (e) Seppanen,
O.; Muuronen, M.; Helaja, J. Eur. J. Org. Chem. 2014, 2014, 4044.
(f) Zhao, T. K.; Xu, B. Org. Lett. 2010, 12, 212. (g) Åkerbladh, L.;
Nordeman, P.; Wejdemar, M.; Odell, L. R.; Larhed, M. J. Org. Chem.
2015, 80, 1464. (h) Fei, X. D.; Zhou, Z.; Li, W.; Zhu, Y. M.; Shen, J. K.
Eur. J. Org. Chem. 2012, 2012, 3001.
initially activated by Cu(I), which acts as a Lewis acid,12 followed
by the hydroamination to give enamine 10 or 11.13 Then, the
Cu(I) is coordinated by the carbamoyl group of the enamine 11
and directly protodemetalation delivers the quinolone 3a and
regenerates the catalyst.9 Alternatively, a Cu-catalyzed aza-
Michael addition of 1a with enamine 10 may be involved in the
reaction when N-substituted secondary anilines as the substrates.
To this end, the Cu(I) is coordinated with the carbamoyl group
of A to deliver the intermediate B, which undergoes directly
protodemetalation to generate the dihydroepindolidione 5a and
regenerate the catalyst.
In conclusion, we have developed a unique, direct, and more
general Cu(I)-catalyzed cyclization for constructing 4-quinolines
or dihydroepindolidiones from simple and readily available
substrates in a one-pot and chemoselective manner by switching
the type and nature of anilines. The (thio)phenols could be used
as visible substrates for the Cu(I)-catalyzed system to replace the
primary aniline substrates. In consideration of these impressive
features, including tunable chemoselectivity, excellent substrate/
functional group tolerance, good yield, and highly valuable
chemical structures of the obtained products, we believe that the
present protocol should have the potential for broad synthetic
utility.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, characterization of products,
and copies of 1H and 13C NMR spectra (PDF)
(8) (a) Torii, S.; Okumoto, H.; Long, H. X. Tetrahedron Lett. 1990, 31,
7175. (b) Torii, S.; Okumoto, H.; Xu, L. H. Tetrahedron Lett. 1991, 32,
237. (c) Kalinin, V. N.; Shostakovsky, M. V.; Ponomaryov, A. B.
Tetrahedron Lett. 1992, 33, 373. (d) Haddad, N.; Tan, J.; Farina, V. J.
Org. Chem. 2006, 71, 5031. (e) Wu, J.; Zhou, Y.; Wu, T.; Zhou, Y.;
Chiang, C.-W.; Lei, A. Org. Lett. 2017, 19, 6432.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
(9) Xu, X.; Zhang, X. Org. Lett. 2017, 19, 4984.
(10) (a) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M.
J. Am. Chem. Soc. 2014, 136, 5424. (b) Lian, Y.; Bergman, R. G.; Lavis, L.
D.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 7122. (c) Lian, Y.; Huber,
T.; Hesp, K. D.; Bergman, R. G.; Ellman, J. A. Angew. Chem., Int. Ed.
2013, 52, 629. (d) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015,
137, 490. (e) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6,
498.
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX