2194
M. Feuerstein et al. / Tetrahedron Letters 43 (2002) 2191–2194
8
tivity in favour of the linear isomer was higher in the
presence of activated aryl bromides. Finally, we per-
formed the reaction with the sterically demanding
ethers cyclohexylvinylether and t-butylvinylether. In all
cases we observed higher regioselectivities in favour of
the linear isomer. For example, for the reaction of
4-bromobenzophenone in the presence of cyclo-
hexylvinylether a ratio linear/branched isomers of 94/6
was observed (entry 19). In the presence of n-
butylvinylether the ratio was 78/22 (entry 6). With
cyclohexylvinylether quite high reaction rates were
observed. On the other hand, with t-butylvinylether
much lower TONs were obtained.
ladacycles, see: (a) Herrmann, W. A.; Brossmer, C.; Ofele,
K.; Reisinger, C.; Riermeier, T.; Beller, M.; Fisher, H.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1844; (b) Littke,
A.; Fu, G. J. Org. Chem. 1999, 64, 10; (c) Miyazaki, F.;
Yamaguchi, K.; Shibasaki, M. Tetrahedron Lett. 1999, 40,
7379; (d) Gai, X.; Grigg, R.; Ramzan, I.; Sridharan, V.;
Collard, S.; Muir, J. Chem. Commun. 2000, 2053; (e)
Gibson, S.; Foster, D.; Eastham, D.; Tooze, R.; Cole-
Hamilton, D. Chem. Commun. 2001, 779.
3. Herrmann, W. A.; Brossmer, C.; Reisinger, C.; Riermeier,
8
T.; Ofele, K.; Beller, M. Chem. Eur. J. 1997, 3, 1357.
4. For examples of Heck reaction using styrene: (a) Cabri,
W.; Candiani, I.; Bedeschi, A.; Santi, R. J. Org. Chem.
1992, 57, 3558; (b) Bumagin, N. A.; Bykov, V. V.;
Sukhomlinova, L. I.; Tolstaya, T. P.; Beletskaya, I. P. J.
Organomet. Chem. 1995, 486, 259; (c) Ohff, M.; Ohff, A.;
Boom, M.; Milstein, D. J. Am. Chem. Soc. 1997, 119,
11687; (d) Albisson, D.; Bedford, R.; Scully, P. N. Tetra-
hedron Lett. 1998, 39, 9793; (e) Ohff, M.; Ohff, A.;
Milstein, D. Chem. Commun. 1999, 357; (f) Bergbreiter,
D.; Osburn, P.; Liu, Y.-S. J. Am. Chem. Soc. 1999, 121,
9531; (g) Gruber, A.; Zim, D.; Ebeling, G.; Monteiro, A.;
Dupont, J. Org. Lett. 2000, 2, 1287, (h) Littke, A.; Fu, G.
J. Am. Chem. Soc. 2001, 123, 6989; (i) Gruber, A.;
Pozebon, D.; Monteiro, A.; Dupont, J. Tetrahedron Lett.
2001, 42, 7345; (j) Iyer, S.; Jayanthi, A. Tetrahedron Lett.
2001, 42, 7877.
5. For examples of Heck reaction using enol ethers: (a)
Hallberg, A.; Westfelt, L.; Holm, J. Org. Chem. 1981, 46,
5414; (b) Andersson, C.-M.; Hallberg, A.; Daves, D. J.
Org. Chem. 1987, 52, 3529; (c) Cabri, W.; Candiani, I.;
Bedeschi, A.; Santi, R.; Tetrahedron Lett. 1991, 32, 1753;
(d) Cabri, W.; Candiani, I.; Bedeschi, A.; Penco, S. J. Org.
Chem. 1992, 57, 1481; (e) Larhed, M.; Andersson, C.,
Hallberg, A. Acta Chem. Scand. 1993, 47, 212; (f) Cabri,
W.; Candiani, I.; Bedeschi, A.; Santi, R. J. Org. Chem.
1993, 58, 7421; (g) Cabri, W.; Candiani, I. Acc. Chem.
Res. 1995, 28, 2; (h) Vallin, K.; Larhed, M.; Hallberg, A.
J. Org. Chem. 2001, 66, 4340.
In conclusion, the use of the tetradentate ligand Tedi-
cyp associated with a palladium complex provides a
convenient catalyst for the Heck reaction with styrene
and vinylether derivatives. This catalyst seems to be
much more efficient than the complexes formed with
triphenylphosphine ligand. This efficiency probably
comes from the presence of the four diphenylphosphi-
noalkyl groups stereospecifically bound to the same
face of the cyclopentane ring which probably increases
the coordination of the ligand to the metal and prevent
precipitation of the catalyst. In the presence of this
catalyst the Heck vinylation of aryl bromides with
styrene derivatives can be performed with as little as
0.001 mol% catalyst. These results represent an envi-
ronmentally friendly procedure. Moreover, due to the
high price of palladium, the practical advantage of such
low catalyst loading reactions can become increasingly
important for industrial processes.
Acknowledgements
We thank the CNRS for providing financial support
and M.F. is grateful to the Ministe`re de la Recherche et
de la Technologie for a grant.
6. For a review on the synthesis of polypodal diphenylphos-
phine ligands, see: Laurenti, D.; Santelli, M. Org. Prep.
Proc. Int. 1999, 31, 245–294.
7. (a) Laurenti, D.; Feuerstein, M.; Pe`pe, G.; Doucet, H.;
Santelli, M. J. Org. Chem. 2001, 66, 1633; (b) Feuerstein,
M.; Laurenti, D.; Doucet, H.; Santelli, M. Chem. Com-
mun. 2001, 43.
References
1. For reviews on the palladium-catalysed Heck reaction,
see: (a) Heck, R. F. Palladium Reagents in Organic Syn-
theses; Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W.,
Eds.; Academic Press: London, 1985; p. 2; (b) Heck, R. F.
In Comprehensive Organic Synthesis; Trost, B. M.; Flem-
ing, I.; Eds. Vinyl Substitution with Organopalladium
Intermediates; Pergamon: Oxford, 1991; Vol. 4; (c)
Malleron, J.-L.; Fiaud, J.-C.; Legros, J.-Y. Handbook of
Palladium-Catalysed Organic Reactions; Academic Press:
London, 1997; (d) Reetz, M. T. In Transition Metal
Catalysed Reactions; Davies, S. G.; Murahashi, S.-I.,
Eds.; Blackwell: Oxford, 1999; (e) Beletskaya, I.; Chep-
rakov, A. Chem. Rev. 2000, 100, 3009; (f) Withcombe, N.;
Hii (Mimi) K. K.; Gibson, S. Tetrahedron, 2001, 57, 7449.
2. For recent examples of Heck reactions catalysed by pal-
8. Feuerstein, M.; Laurenti, D.; Bougeant, C.; Doucet, H.;
Santelli, M. Chem. Commun. 2001, 325.
9. (a) Feuerstein, M.; Doucet, H.; Santelli, M. J. Org. Chem.
2001, 66, 5923; (b) Feuerstein, M.; Doucet, H.; Santelli,
M. Synlett 2001, 1980.
10. As a typical experiment, the reaction of 4-bromoben-
zophenone (2.61 g, 10 mmol), styrene (2.08 g, 20 mmol)
and K2CO3 (2.76 g, 20 mmol) at 140°C during 20 h in dry
DMF (10 mL) in the presence of cis,cis,cis-1,2,3,4-
tetrakis (diphenylphosphinomethyl)cyclopentane/[PdCl-
(C3H5)]2 complex (0.0001 mmol) under argon affords the
corresponding product after evaporation and filtration on
silica gel in 92% (2.61 g) isolated yield.