ORGANIC
LETTERS
2011
Vol. 13, No. 7
1784–1786
Palladium- and Nickel-Catalyzed
Aminations of Aryl Imidazolylsulfonates
and Sulfamates
ꢀ
Lutz Ackermann,* Rene Sandmann, and Weifeng Song
€
Institut fu€r Organische und Biomolekulare Chemie, Georg-August-Universitat,
€
Tammannstrasse 2, 37077 Gottingen, Germany
Received January 27, 2011
ABSTRACT
A nickel complex derived from dppf, along with NaOt-Bu as the base, allowed for challenging aminations of aryl sulfamates. An improved
functional group tolerance is observed in novel palladium-catalyzed aminations of imidazolylsulfonates with rac-BINAP as the ligand.
Transition-metal-catalyzed arylations of amines with
aryl halides are among the most important methods for the
selective formation of C-N bonds.1 Particularly, the use of
phenol-derived electrophiles in catalyzed arylations is highly
attractive,2 since they are readily accessible and can be easily
implemented as directing groups in site-selective arene func-
tionalization strategies.2,3 However, the inherently high C-O
bond strength in phenols calls for an activation of these
precursors, which was largely achieved through the use of
rather expensive fluorine-containing reagents.4 On the con-
trary, recent progress in the use of phenol-derived electro-
philes in catalytic arylations was represented by the use of
imidazolylsulfonates and sulfamates, because of their air-
and moisture-stable nature, their attractive handling properties,
and their low costs.5,6 While these user-friendly electro-
philes were recently employed for efficient C-C bond forma-
tions, their use in transition-metal-catalyzed aminations
(5) For representative examples of catalyzed arylations with tosylates
or mesylates, see: C-N bond formation: (a) Mantel, M. L. H.; Lind-
hardt, A. T.; Lupp, D.; Skrydstrup, T. Chem.;Eur. J. 2010, 16, 5437–
5442. (b) Lundgren, R. J.; Stradiotto, M. Angew. Chem., Int. Ed. 2010,
49, 8686–8690. (c) So, C. M.; Zhou, Z.; Lau, C. P.; Kwong, F. Y. Angew.
Chem., Int. Ed. 2008, 47, 6402–6406. (d) Nguyen, H. N.; Huang, X.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818–11819. (e) Roy,
A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 8704–8705. (f) Huang,
X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars, A.; Buchwald, S. L.
J. Am. Chem. Soc. 2003, 125, 6653–6655. (g) Bolm, C.; Hildebrand, J. P.;
Rudolph, J. Synthesis 2000, 911–913. (h) Hamann, B. C.; Hartwig, J. F.
J. Am. Chem. Soc. 1998, 120, 7369–7370 and references cited herein. See
also: (i) Ackermann, L.; Fenner, S. Chem. Commun. 2011, 47, 430–432.
(j) Yeung, P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int.
Ed. 2010, 49, 8918–8922. (k) Wilson, D. A.; Wilson, C. J.; Moldoveanu,
C.; Resmerita, A.-M.; Corcoran, P.; Hoang, L. M.; Rosen, B. M.;
Percec, V. J. Am. Chem. Soc. 2010, 132, 1800–1801. (l) Chow, W. K.;
So, C. M.; Lau, C. P.; Kwong, F. Y. J. Org. Chem. 2010, 75, 5109–5112.
(m) Bhayana, B.; Fors, B. P.; Buchwald, S. L. Org. Lett. 2009, 11, 3954–
3957. (n) Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int.
Ed. 2009, 48, 201–204. (o) So, C. M.; Lau, C. P.; Kwong, F. Y. Angew.
Chem., Int. Ed. 2008, 47, 8059–8063. (p) Zhang, L.; Wu, J. Adv. Synth.
Catal. 2008, 350, 2409–2413. (q) Zhang, L.; Wu, J. J. Am. Chem. Soc.
2008, 130, 12250–12251. (r) Hansen, A. L.; Ebran, J.-P.; Ahlquist, M.;
Norrby, P.-O.; Skrydstrup, T. Angew. Chem., Int. Ed. 2006, 45, 3349–
3353. (s) Ackermann, L.; Althammer, A. Org. Lett. 2006, 8, 3457–3460.
(t) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 12527–12530 and
references cited therein.
(1) (a) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27–50. (b)
Klinkenberg, J. L.; Hartwig, J. F. Angew. Chem., Int. Ed. 2011, 50, 86–
95. (c) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954–
€
6971. (d) Kruger, K.; Tillack, A.; Beller, M. Adv. Synth. Catal. 2008, 350,
2153–2167. (e) Ackermann, L. Synlett 2007, 507–526. (f) Schlummer, B.;
Scholz, U. Adv. Synth. Catal. 2004, 346, 1599–1626.
(2) (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.;
Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, DOI:
10.1021/cr100259t. (b) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J.
Chem.;Eur. J. 2011, 17, 1728–1759. (c) Yu, D.-G.; Li, B.-J.; Shi, Z.-J.
Acc. Chem. Res. 2010, 43, 1486–1495. (d) Littke, A. In Modern Arylation
Methods; Ackermann, L., Ed.; Wiley-VCH: Weinheim, 2009; pp 25-67.
(3) Hartung, C. G.; Snieckus, V. In Modern Arene Chemistry; Astruc,
D., Ed.; Wiley-VCH: Weinheim, 2002; pp 330-367.
€
(4) Select reviews: (a) Hogermeier, J.; Reissig, H.-U. Adv. Synth.
Catal. 2009, 351, 2747–2763. (b) Zeni, G.; Larock, R. C. Chem. Rev.
2006, 106, 4644–4680. (c) Stang, P. J.; Hanack, M.; Subramanian, L. R.
Synthesis 1982, 85–126.
r
10.1021/ol200267b
Published on Web 02/25/2011
2011 American Chemical Society