1252
A. J. Buckmelter et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1248–1252
3. Heimbrook, D. C.; Huber, H. E.; Stirdivant, S. M.; Patrick, D. R.; Claremon, D.;
Liverton, N.; Selnick, H.; Ahern, J.; Conroy, R.; Drakas, R.; Falconi, N.; Hancock,
P.; Robinson, R.; Smith, G.; Olif, A. American Association for Cancer Research,
New Orleans, Apr 1998; Poster #3793.
4c were generated by reacting 7 with preformed amino aluminates
followed by removal of the silyl protecting group.19
2-Aryl-3-amino furopyridines (9) were prepared from 3-bromo-
isonicotinonitrile 8 according to the procedure of LaMattina and
Taylor.23 The subsequent transformations to 4d–4h were similar
to the thienopyridine series and are highlighted in Scheme 4.
Being of interest due to its cellular activity, 4h was screened
against a panel of 25 non-RAF kinases at 1 lM. Satisfyingly, 4h
did not show greater than 50% inhibition against any of the
enzymes with the exception of casein kinase 1 delta.
4. ROCS: OpenEye Scientific Software: Santa Fe, NM. Virtual hits were comprised
of compounds from
a 50% sampling of our focused library collection
(approximately 200,000 virtual compounds) with a purely shape-matching
Tanimoto index of 0.85 or more.
5. Laird, E.; Topalov, G.; Lyssikatos, J. P.; Welch, M.; Grina, J.; Hansen, J.;
Newhouse, B. WO 2006125101.
6. For assay description see: Laird, E.; Lyssikatos, J.; Welch, M.; Grina, J.; Hansen,
J.; Newhouse, B.; Olivero, A.; Topolav, G. WO 2006/084015 A2, 2006.
7. The homology model was constructed using the program COMPOSER (Tripos
Associates, St. Louis MO). The X-ray coordinates of Lck in complex with PP2
(PDB accession code 1QPE) were chosen as the major template.
8. Noble, M. E. M.; Endicott, J. A.; Johnson, L. N. Science 2004, 303, 1800.
9. Binding modes were generated using the program GOLD (v2.2) Jones, G.;
Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267, 727.
10. Hansen, J. D.; Grina, J.; Newhouse, B.; Welch, M.; Topalov, G.; Littman, N.;
Callejo, M.; Gloor, S.; Martinson, M.; Laird, E.; Brandhuber, B. J.; Vigers, G.;
Morales, T.; Woessner, R.; Randolph, N.; Lyssikatos, J.; Olivero, O. Bioorg. Med.
Chem. Lett. 2008, 28, 4692.
11. Takle, A. K.; Brown, M. J. B.; Davies, S.; Dean, D. K.; Francis, G.; Gaiba, A.; Hird, A.
W.; King, F. D.; Lovell, P. K.; Naylor, A.; Reith, A. D.; Steadman, J. G.; Wilson, D.
M. Bioorg. Med. Chem. Lett. 2006, 16, 378.
12. The existence of an internal hydrogen bond was later confirmed by X-ray
crystallography. Vide infra.
13. Gaussian98, Revision A.11. Frisch, M.J. et al. Gaussian Inc. Pittsburgh PA.
14. (a) Murray, J. S.; Ranganathan, S.; Politzer, P. J. Org. Chem. 1991, 56, 3734; (b)
Chan, A. W. E.; Golec, J. M. C. Bioorg. Med. Chem. 1996, 4, 1673; (c) McClure, K.
F.; Abramov, Y. A.; Laird, E. R.; Barberia, J. T.; Cai, W.; Carty, T. J.; Cortina, S. R.;
Danley, D. E.; Dipesa, A. J.; Donahue, K. M.; Dombroski, M. A.; Elliott, N. C.;
Gabel, C. A.; Han, S.; Hynes, T. R.; LeMotte, P. K.; Mansour, M. N.; Marr, E. S.;
Letavic, M. A.; Pandit, J.; Ripin, D. B.; Sweeney, F. J.; Tan, D.; Tao, Y. J. Med. Chem.
2005, 48, 5728.
The in vitro ADME and pharmacokinetic profiles of furopyri-
dines 4c and 4h were determined. Although 4c and 4h were found
to be intrinsically stable in plasma and in liver hepatocytes, and
were highly permeable without efflux (Table 4), both compounds
were rapidly cleared from the plasma compartment when dosed
in rats (data not shown). The in vivo/in vitro disconnection can
be partially explained by the poor stability of 4h in rat microsomes
(CLpred = 50 ml/min/kg). Degradation of the oxime moiety to the
corresponding ketone was hypothesized and can occur via well-
known CYP mediated processes as well as in the presence of stom-
ach acid.25 This possibility led to a significant effort toward the
identification of indazole-based B-raf inhibitors, which we describe
in the following paper.26
Via virtual and high-throughput screening we discovered an
imidazopyrazine template as a lead structure for inhibition of
B-Raf. X-ray crystal structures confirmed the expected binding
mode, and consideration of binding orientation and electronic
properties enabled optimization to thienopyridines as a more po-
tent second-generation lead. Optimization of the thienopyridines
to remove the inherent CYP liabilities eventually led us to the
highly potent furopyridines, of which several potent and selective
B-RAF inhibitors have been identified. In the following paper, we
describe further evolution of the series geared toward enhanced
pharmacokinetic properties.
15. Interaction potentials were the averaged energy for
a water molecule
interacting with the hinge acceptor of the inhibitor as computed via Monte
Carlo simulation using the OPLS potential function and the TIP4P water model:
(a) Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110, 1657; (b)
Jorgensen, W. L.; Blake, J. F.; Buckner, K. Chem. Phys. 1989, 129, 193.
16. Coordinates for the B-Raf crystal structure have been deposited in the PDB:
accession code 3PSB.
17. Dalvie, D. K.; Kalgutkar, A. S.; Khojasteh-Bakht, S. C.; Obach, R. S.; O’Donnell, J.
P. Chem. Res. Toxicol. 2002, 15, 269.
18. Calculation of partial atomic charges for the furopyridine template resulted in
À0.67 for the pyridyl nitrogen.
19. Miknis, G.; Lyssikatos, J. P.; Laird, E.; Tarlton, E.; Buckmelter, A. J.; Ren, L.; Rast,
B.; Schlachter, S. T.; Wenglowsky, S. M. US 2007049603.
Acknowledgment
20. (a) Groebke, K.; Weber, L.; Mehlin, F. Synlett 1998, 661; (b) Blackburn, C.; Guan,
B.; Fleming, P.; Shiosaki, K.; Tsai, S. Tetrahedron Lett. 1998, 39, 3635; (c)
Bienayme, H.; Bouzid, K. Angew. Chem., Int. Ed. 1998, 37, 2234.
21. Beugelmans, R.; Bois-Choussy, M.; Boudet, B. Tetrahedron 1983, 39, 4153.
22. 5-Bromo-2,3-dihydro-1H-inden-1-one O-tert-butyldimethylsilyl oxime was
synthesized in 99% yield by heating 5-bromo-2,3-dihydro-1H-inden-1-one
and NH2OTBS in the presence of a catalytic amount of TsOH.
The authors thank Susan Rhodes, Jennifer Otten, and Michelle
Livingston for Caco, P450, and solubility determinations. The
authors also thank Drs. Joachim Rudolph and Stefan Gradl for
critical review of the manuscript and helpful suggestions.
23. LaMattina, J. L.; Taylor, R. L. J. Org. Chem. 1981, 46, 4179.
24. Morita, H.; Shiotani, S. J. Heterocycl. Chem. 1986, 23, 549.
References and notes
25. (a) Kumpulainen, H.; Mähönen, N.; Laitinen, M.-L.; Jaurakkajärvi, M.; Raunio,
H.; Juvonen, R. O.; Vepsäläinen, J.; Järvinen, T.; Rautio, J. J. Med. Chem. 2006, 49,
1207; (b) Heberling, S.; Girreser, U.; Wolf, S.; Clement, B. Biochem. Pharmacol.
2006, 71, 354.
26. Ren, L.; Wenglowsky, S.; Miknis, G.; Rast, B.; Buckmelter, A. J.; Ely, R. J.;
Schalachter, S.; Laird, E. R.; Randolph, N.; Callejo, M.; Martinson, M.;
Galbrainth, S.; Brandhuber, B. J.; Viger, G.; Voegtli, W. C.; Morales, T.;
Lyssikatos, J. Bioorg. Med. Chem. Lett. 2011, 21, 1243.
1. (a) Davies, H.; Bignell, G. R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.;
Woffendin, H.; Garnett, M. J.; Bottomley, W., et al Nature 2002, 417, 949; (b)
Beeram, M.; Patnaik, A.; Rowinsky, E. K. J. Clin. Oncol. 2005, 23, 6771; (c)
Dhillon, A. S.; Kolch, W. Cancer Cell 2004, 5, 303.
2. (a) Ramurthy, S.; Subramanian, S.; Aikawa, M.; Amiri, P., et al J. Med. Chem.
2008, 51, 7049; (b) Eisen, T.; Ahmad, T.; Flaherty, K. T.; Gore, M.; Kaye, S.;
Marias, R., et al Br. J. Cancer 2006, 95, 581.