references); (d) P. K. T. Mew and F. Vo¨gtle, Angew. Chem., Int. Ed.
Engl., 1979, 18, 159.
Coalescence of the isopropyl signals occurred at 96 uC, and
increasing the temperature generated eventually a single set of
DMTS peaks above 100 uC (Fig. 1c). The barrier to enantiomeri-
4 For examples, see: (a) ‘‘Chemosensors’’: J. Raker and T. E. Glass,
J. Org. Chem., 2001, 66, 6505; T. E. Glass, J. Am. Chem. Soc., 2000,
122, 4522; S. Yagi, H. Kitayama and T. Takagishi, J. Chem. Soc.,
Perkin Trans. 1, 2000, 925; (b) ‘‘gyroscopes’’: C. E. Godinez, G. Zepeda,
C. J. Mortko, H. Dang and M. A. Garcia-Garibay, J. Org. Chem.,
2004, 69, 1652; Z. Dominguez, H. Dang, M. J. Strouse and
M. A. Garcia-Garibay, J. Am. Chem. Soc., 2002, 124, 7719;
Z. Dominguez, H. Dang, M. J. Strouse and M. A. Garcia-Garibay,
J. Am. Chem. Soc., 2002, 124, 2398; (c) ‘‘barrow’’: C. Joachim, H. Tang,
F. Moresco, G. Rapenne and G. Meyer, Nanotechnology, 2002, 13, 330;
(d) ‘‘turnstile’’: T. C. Bedard and J. S. Moore, J. Am. Chem. Soc., 1995,
117, 10662.
5 For examples, see: (a) S. Toyota, M. Goichi and M. Kotani, Angew.
Chem. Int. Ed., 2004, 43, 2248; (b) G. Brizius, K. Billingsley, M. D. Smith
and U. H. F. Bunz, Org. Lett., 2003, 5, 3951; (c) M. Levitus,
K. Schmieder, H. Ricks, K. D. Shimizu, U. H. F. Bunz and
M. A. Garcia-Garibay, J. Am. Chem. Soc., 2001, 123, 4259; (d)
T. Miteva, L. Palmer, L. Kloppenburg, D. Neher and U. H. F. Bunz,
Macromolecules, 2000, 33, 652.
6 The parent 2,29,6,69-tetrakis(ethynyl)diphenylacetylene (2a, X 5 Y 5 H)
is known: J. D. Bradshaw, L. Guo, C. A. Tessier and W. J. Youngs,
Organometallics, 1996, 15, 2582.
7 K. N. Houk, L. T. Scott, N. G. Rondan, D. C. Spellmeyer,
G. Reinhardt, J. L. Hyun, G. J. DeCicco, R. Weiss, M. H. M. Chen,
L. S. Bass, J. Clardy, F. S. Jørgensen, T. A. Eaton, V. Sarkozi,
C. M. Petit, L. Ng and K. D. Jordan, J. Am. Chem. Soc., 1985, 107,
6556.
zation in 2b was estimated at 18.7 kcal mol21 14
.
The rotational barrier in 2b is remarkably high, in the high
range of those reported for more complex diarylacetylene systems.
For example, the DG{ values for Toyota’s bis(1-phenyl-9-
anthryl)acetylenes range between 10 and 18 kcal mol21 3b
Moore’s ‘‘molecular turnstiles’’ have corresponding values of 13–
20 kcal mol21 4d
depending on the size of substituents on the aryl
,
while
,
rings. On the other hand, the conformationally mobile 2,29,6,69-
tetrakis(aryl)diphenylacetylene frame exhibits barriers below
8 kcal mol21 3a
, less than a half of that in 2b.
In summary, the first cases of hindered rotation around the
triple bond in simple diphenylacetylenes have been observed,
including that in the simple chiral tetraethynyl system 2b. The
conformational barriers can be substantial, leading to the
observation of restricted rotation by NMR at room temperature.
Future work will aim to gain insight into the effect of substituent
size on the flexibility of 2a with the ultimate goal of achieving
resolution of suitable derivatives. These investigations may lead to
the development of 2a as a viable new tool in chiral scaffold
construction.
ˇ
8 (a) O. S. Miljanic´ and K. P. C. Vollhardt, in Carbon-Rich Compounds:
This work was supported by the National Science Foundation
(CHE-0451241) and the Director, Office of Energy Research,
Office of Basic Energy Sciences, Chemical Sciences Division, of the
U. S. Department of Energy, under Contract DE-AC03-
76SF00098. The Center for New Directions in Organic Synthesis
is supported by Bristol-Myers Squibb as a Sponsoring Member
and Novartis as a Supporting Member.
Molecules to Materials, ed. M. M. Haley and R. R. Tykwinski, Wiley-
VCH, Weinheim, 2005, in press; (b) K. P. C. Vollhardt and
D. L. Mohler, in Advances in Strain in Organic Chemistry, ed.
B. Halton, JAI, London, 1996, vol. 5, p. 121.
9 (a) J. A. Marsden, M. J. O’Connor and M. M. Haley, Org. Lett., 2004,
6, 2385; (b) M. Sonoda, Y. Sakai, T. Yoshimura, Y. Tobe and
K. Kamada, Chem. Lett., 2004, 33, 972; (c) J. M. Kehoe, J. H. Kiley,
J. J. English, C. A. Johnson, R. C. Petersen and M. M. Haley, Org.
Lett., 2000, 2, 969.
10 (a) V. S. Iyer, K. P. C. Vollhardt and R. Wilhelm, Angew. Chem. Int.
Ed., 2003, 42, 4379; (b) P. I. Dosa, C. Erben, V. S. Iyer, K. P. C.
Vollhardt and I. M. Wasser, J. Am. Chem. Soc., 1999, 121, 10430; (c)
R. Boese, A. J. Matzger and K. P. C. Vollhardt, J. Am. Chem. Soc.,
1997, 119, 2052.
11 For reviews see: (a) W. Tang and X. Zhang, Chem. Rev., 2003, 103,
3029; (b) K. Mikami, K. Aikawa, Y. Yusa, J. J. Jodry and
M. Yamanaka, Synlett, 2002, 1561; (c) M. McCarthy and P. J. Guiry,
Tetrahedron, 2001, 57, 3809.
ˇ
´
Ognjen S. Miljanic, Sangdon Han,{ Daniel Holmes, Gaston R. Schaller
and K. Peter C. Vollhardt*
Center for New Directions in Organic Synthesis, Department of
Chemistry, University of California at Berkeley, and the Chemical
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720-1460, USA. E-mail: kpcv@berkeley.edu;
Fax: +1 510 643 5208; Tel: +1 510 642 0286
Notes and references
12 S. Han, D. R. Anderson, A. D. Bond, H. V. Chu, R. L. Disch,
D. Holmes, J. M. Schulman, S. J. Teat, K. P. C. Vollhardt and
G. D. Whitener, Angew. Chem. Int. Ed., 2002, 41, 3227.
13 S. Han, A. D. Bond, R. L. Disch, D. Holmes, J. M. Schulman,
S. J. Teat, K. P. C. Vollhardt and G. D. Whitener, Angew. Chem. Int.
Ed., 2002, 41, 3223.
1 (a) E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of
Organic Compounds, Wiley, New York, 1994, p. 1142; (b) first
observation: G. H. Christie and J. H. Kenner, J. Chem. Soc. Trans.,
1922, 121, 614.
2 (a) J. M. Seminario, A. G. Zacarias and J. M. Tour, J. Am. Chem. Soc.,
1998, 120, 3970; (b) R. Stølevic and P. Bakken, J. Mol. Struct., 1990,
239, 205; (c) A. Grumadas and D. Poskus, Zh. Fiz. Khim., 1987, 61,
2838; (d) K. Okuyama, T. Hasegawa, M. Ito and N. Mikami, J. Phys.
Chem., 1984, 88, 1711.
3 See, inter alia: (a) S. Toyota, T. Iida, C. Kunizane, N. Tanifuji and
Y. Yoshida, Org. Biomol. Chem., 2003, 1, 2298; (b) S. Toyota and
T. Makino, Tetrahedron Lett., 2003, 44, 7775; (c) S. Toyota,
T. Yamamori and T. Makino, Tetrahedron, 2001, 57, 3521 (and cited
¯
14 (a) M. Oki, Applications of Dynamic NMR Spectroscopy to Organic
Chemistry, VCH, Weinheim, 1985; (b) F. P. Gasparro and
N. H. Kolodny, J. Chem. Educ., 1977, 54, 258.
15 M. Mu¨ller, W.-R. Fo¨rster, A. Holst, A. J. Kingma, E. Schaumann and
G. Adiwidjaja, Chem. Eur. J., 1996, 2, 949.
16 K. Sonogashira, in Handbook of Organopalladium Chemistry for
Organic Synthesis, ed. E.-I. Negishi, Wiley, New York, 2002, vol. 1,
p. 493, (and cited references).
2608 | Chem. Commun., 2005, 2606–2608
This journal is ß The Royal Society of Chemistry 2005