998
N. R. Kelly et al. / Tetrahedron Letters 52 (2011) 995–998
Thummel, R. P. Terpyridine Oligopyridine and Polypyridine Ligands In
Me
Me
4% aq. HNO3
H
Comprehensive Coordination Chemistry II; McCleverty, J. A., Meyer, T. J., Eds.;
Elsevier, 2003; Vol. 1, pp 41–53; Kaes, C.; Katz, A.; Hosseini, M. W. Chem. Rev.
2000, 100, 3553–3590.
H
N
N
N
N
N
N
solvothermal
2. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A.
Coord. Chem. Rev. 1988, 84, 85–277; Balzani, V.; Juris, A.; Venturi, M.;
Campagna, S.; Serroni, S. Chem. Rev. 1996, 96, 759–834; Boerner, L. J. K.;
Zaleski, J. M. Curr. Opin. Chem. Biol. 2005, 9, 135–144; Inagaki, A.; Akita, M.
Coord. Chem. Rev. 2010, 254, 1220–1239; Zakeeruddin, S. M.; Gratzel, M.;
Fraser, D. M. Biosens. Bioelectron. 1996, 11, 305–315; Barriere, F.; Kavanagh, P.;
Leech, D. Electrochim. Acta 2006, 51, 5187–5192; Hildebrand, F.; Kohlmann, C.;
Franz, A.; Lutz, S. Adv. Synth. Catal. 2008, 350, 909–918; Wu, W. Y.; Chen, S. N.;
Tsai, F. Y. Tetrahedron Lett. 2006, 47, 9267–9270; Shaughnessy, K. H. Chem. Rev.
2009, 109, 643–710; O’Donoghue, K. A.; Kelly, J. M.; Kruger, P. E. Dalton Trans.
2004, 13–15; O’Donoghue, K.; Penedo, J. C.; Kelly, J. M.; Kruger, P. E. Dalton
Trans. 2005, 1123–1128; Coates, C. G.; Callaghan, P. L.; McGarvey, J. J.; Kelly, J.
M.; Kruger, P. E.; Higgins, M. E. J. Raman Spectrosc. 2000, 31, 283–288; Kruger, P.
E.; Mackie, P. R.; Nieuwenhuyzen, M. J. Chem. Soc., Perkin Trans. 2 2001, 1079–
1083.
decarboxylation
Py-3,5-dmpz
Py-pz
Scheme 2. Solvothermal heating of Py-3,5-dmpz in aqueous nitric acid produced
Py-pz following in situ decarboxylation.
We have successfully applied a solvothermal strategy using di-
lute nitric acid solutions towards the synthesis of a range of poly-
pyridine-poly-carboxylic acids. This method can be used as a sub-
stitute for the traditional metal-based oxidants that are usually
employed in the synthesis of such molecules. This method is supe-
rior to traditional routes from an environmental point-of-view and
also allows access to novel molecules inaccessible via these routes.
The poly-carboxylic acid molecules might find utility in materials,
coordination and bio-inorganic chemistry.
3. Albrecht, M. Chem. Rev. 2001, 101, 3457–3497; Constable, E. C. Tetrahedron
1992, 48, 10013–10059; Goetz, S.; Kruger, P. E. Dalton Trans. 2006, 1277–1284;
Lehn, J.-M. Supramolecular Chemistry, Concepts and Perspectives; VCH:
Weinheim, 1995; Constable, E. C. Chem. Soc. Rev. 2007, 36, 246–253;
Hofmeier, H.; Schubert, U. S. Chem. Soc. Rev. 2004, 33, 373–399; Constable, E.
C. Prog. Inorg. Chem. 1994, 42, 67–138; Steel, P. J. Acc. Chem. Res. 2005, 38, 243–
250.
A brief examination of methyl-substituted pyrazole molecules
showed that they too were amenable to oxidation via this method
although being more sensitive to degradation of the pyrazole ring
when not substituted at the 4-position and likewise are also sus-
ceptible to decarboxylation. Future work will concentrate on incor-
porating the poly-pyridine-poly-carboxylic acids into coordination
complexes and we will report upon these findings in due course.
4. Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Polymers: Design Analysis
and Application; The Royal Society of Chemistry, 2008.
5. Grätzel, M. Acc. Chem. Res. 2009, 42, 1788–1798; O’Regan, B.; Grätzel, M. Nature
1991, 335, 737–740; Robertson, N. Angew. Chem., Int. Ed. 2006, 45, 2338–
2345.
6. Fallahpour, R. A. Synthesis 2003, 155–184; Fallahpour, R. A. Curr. Org. Synth.
2006, 3, 19–39; Newkome, G. R.; Patri, A. K.; Holder, E.; Schubert, U. S. Eur. J.
Org. Chem. 2004, 235–254; Heller, M.; Schubert, U. S. J. Org. Chem. 2002, 67,
8269–8272.
7. Oki, A. R.; Morgan, R. J. Synth. Commun. 1995, 24, 4093–4097.
8. Tynan, E.; Jensen, P.; Kruger, P. E.; Lees, A. C.; Nieuwenhuyzen, M. Dalton Trans.
2003, 1223–1228; Tynan, E.; Jensen, P.; Kelly, N. R.; Kruger, P. E.; Lees, A. C.;
Moubaraki, B.; Murray, K. S. Dalton Trans. 2004, 3440–3447; Tynan, E.; Jensen,
P.; Kruger, P. E.; Lees, A. C. Chem. Commun. 2004, 776–777; Tynan, E.; Jensen, P.;
Kruger, P. E.; Lees, A. C.; Moubaraki, B.; Murray, K. S. CrystEngComm 2005, 7,
90–95.
9. Parr instruments general purpose acid digestion bomb 4749 (23 mL) or 4745
(45 mL) were used.
10. Case, F. H. J. Am. Chem. Soc. 1946, 68, 2574–2577.
11. Spillane, C. B.; Fletcher, N. C.; Rountree, S. M.; van den Berg, H.; Chanduloy, S.;
Morgan, J. L.; Keene, F. R. J. Biol. Inorg. Chem. 2007, 12, 797–807; Staats, H.;
Eggers, F.; Haß, O.; Fahrenkrug, F.; Matthey, J.; Lüning, U.; Lützen, A. Eur. J. Org.
Chem. 2009, 4777–4792.
12. Kelly, N. R.; Goetz, S.; Batten, S. R.; Kruger, P. E. CrystEngComm 2008, 10, 68–78;
Kelly, N. R.; Goetz, S.; Batten, S. R.; Kruger, P. E. CrystEngComm 2008, 10, 1018–
1026.
Acknowledgements
The authors thank the University of Canterbury (College of
Science Scholarship to C.S.H.), the Royal Society of New Zealand
Marsden Fund, Science Foundation Ireland and HEA-PRTLI Cycle
3 and Cycle 4 (CSCB) for financial support. The authors thank
Professor Peter Steel and Dr. Anthea Lees (UC) for helpful
discussions.
References and notes
1. Smith, A. P.; Fraser, C. L. Bipyridine Ligands In Comprehensive Coordination
Chemistry II; McCleverty, J. A., Meyer, T. J., Eds.; Elsevier, 2003; Vol. 1, pp 1–23;