Journal of the American Chemical Society
COMMUNICATION
our chlorination protocol to MVK afforded products bearing a
quaternary carbon center with both high yield and high enantios-
electivity (Table 3).21
Han, S. B.; Krische, M. J. Angew. Chem., Int, Ed. 2009, 48, 6313. (e)
Shintani, R.; Inoue, M.; Hayashi, T. Angew. Chem., Int. Ed. 2006,
45, 3353. (f) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru,
T.; Kanemasa, S. J. Am. Chem. Soc. 2006, 128, 16488.
(6) (a) Bui, T.; Borregan, M.; Barbas, C. F., III. J. Org. Chem. 2009,
74, 8935. (b) Cheng, L.; Liu, L.; Wang, D.; Chen, Y.-J. Org. Lett. 2009,
11, 3874. (c) Qian, Z.-Q.; Zhou, F.; Du, T.-P.; Wang, B.-L.; Zhou, J.
Chem. Commun. 2009, 6753.
(7) See ref 4b for a single example with a 61% ee.
(8) Gribkoff, W. K.; Post-Munson, D. J.; Yeola, S. W.; Boissard, C. G.;
Hwwawasam, P. WO 2002030868.
(9) For transformation of 3-chlorooxindole to other oxindole
compounds, see: (a) Ma, S.; Han, X.; Krishnan, S.; Virgil, S. C.; Stoltz,
B. M. Angew. Chem., Int. Ed. 2009, 48, 8037. (b) Grant, C. D.; Krische,
M. J. Org. Lett. 2009, 11, 4485.
In conclusion, we have developed a facile method for the
highly efficient enantioselective chlorination of oxindoles cata-
lyzed by a novel chiral calcium VAPOL phosphate salt. This
method provides access to 3-chloro-oxindole products with high
enantioselectivity. The aforementioned VAPOL phosphate salt
was also found to be a highly effective promoter for the Michael
reaction of 3-aryloxindoles with methyl vinyl ketone. Mechan-
istic investigations and extension of the asymmetric chlorination
protocol to additional reaction systems are currently underway in
our laboratory and will be reported in due course.
(10) For selected reviews, see: (a) Oestreich, M. Angew. Chem., Int.
Ed. 2005, 44, 2324. (b) Ibrahim, H.; Togni, A. Chem. Commun.
2004, 1147.
(11) (a) Cai, Y.; Wang, W.; Shen, K.; Wang, J.; Hu, X.; Lin, L.; Liu,
X.; Feng, X. Chem. Commun. 2010, 1250. (b) Bartoli, G.; Bosco, M.;
Carlone, A.; Locatelli, M.; Melchiorre, P.; Sambri, L. Angew. Chem., Int.
Ed. 2005, 44, 6219. (c) Marigo, M.; Kumaragurubaran, N.; Jørgensen,
K. A. Chem.—Eur. J. 2004, 10, 2133. (d) Hintermann, L.; Togni, A. Helv.
Chim. Acta 2000, 83, 2425.
(12) (a) Amatore, M.; Beeson, T. D.; Brown, S. P.; MacMillan,
D. W. C. Angew. Chem., Int. Ed. 2009, 48, 5121. (b) Brochu, M. P.;
Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108. (c)
Holland, N.; Braunton, A.; Bachmann, S.; Marigo, M.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2004, 43, 5507. (d) Zhang, Y.; Shibatomi, K.;
Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 15038.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
spectral data. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
We thank the National Institutes of Health (NIH GM-082935)
and the National Science Foundation CAREER Program (NSF-
0847108) for financial support.
(13) Basic Inorganic Chemistry, 3rd ed.; Cotton, F. A., Wilkinson, G.,
Gaus, P. L., Eds.; Wiley: New York, 1995.
(14) Selected Ca-catalyzed asymmetric reactions: (a) Tsubogo, T.;
Saito, S.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2008,
130, 13321. (b) Kumaraswamy, G.; Jena, N.; Sastry, M. N. V.; Padmaja,
M.; Markondaiah, B. Adv. Synth. Catal. 2005, 347, 867.(c) Suzuki, T.;
Yamagiwa, N.; Matsuo, Y.; Sakamoto, S.; Yamaguchi, K.; Shibasaki, M.;
Noyori, R. Tetrahedron Lett. 2001, 42, 4669. Sr catalysts:(d) Agostinho,
M.; Kobayashi, S. J. Am. Chem. Soc. 2008, 130, 2430. Ba catalysts:(e)
Saito, S.; Kobayashi, S. J. Am. Chem. Soc. 2006, 128, 8704. (f) Yamatsugu,
K.; Yin, L.; Kamijo, S.; Kimura, Y.; Kanai, M.; Shibasaki, M. Angew.
Chem., Int. Ed. 2009, 48, 1070.
(15) For reviews, see: (a) Terada, M. Synthesis 2010, 1929. (b)
Terada, M. Chem. Commun. 2008, 4097. (c) Akiyama, T. Chem. Rev.
2007, 107, 5744.
(16) For details on our initial catalyst/solvent screening, please see
the Supporting Information.
’ REFERENCES
(1) For reviews, see: (a) Galliford, C. V.; Scheidt, K. A. Angew. Chem.,
Int. Ed. 2007, 46, 8748. (b) Dounay, A. B.; Overman, L. E. Chem. Rev.
2003, 103, 2945.
(2) For selected reviews, see: (a) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv.
Synth. Catal. 2010, 352, 1381. (b) Trost, B. M.; Brennan, M. K. Synthesis
2009, 3003. (c) Lin, H.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003,
42, 36. (d) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209.
(3) Catalytic asymmetric syntheses of 3,30-disubstituted oxindoles:
(a) Bui, T.; Candeias, N. R.; Barbas, C. F., III. J. Am. Chem. Soc. 2010,
132, 5574. (b) Mouri, S.; Chen, Z.; Mitsunuma, H.; Furutachi, M.;
Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 1255. (c)
Taylor, A. M.; Altman, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 2009,
131, 9900. (d) He, R.; Shirakawa, S.; Maruoka, K. J. Am. Chem. Soc. 2009,
131, 16620. (e) He, R.; Ding, C.; Maruoka, K. Angew. Chem., Int. Ed.
2009, 48, 4559. (f) Kato, Y.; Furutachi, M.; Chen, Z.; Mitsunuma, H.;
Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 9168. (g)
Duffey, T. A.; Shaw, S. A.; Vedejs, E. J. Am. Chem. Soc. 2009, 131, 14. (h)
Linton, E. C.; Kozlowski, M. C. J. Am. Chem. Soc. 2008, 130, 16162. (i)
Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc. 2007,
129, 12396. (j) Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2007,
129, 2764. (k) Poulsen, T. B.; Bernardi, L.; Alemꢀan, J.; Overgaard, J.;
Jørgensen, K. A. J. Am. Chem. Soc. 2007, 129, 441. (l) K€undig, E. P.;
Seidel, T. M.; Jia, Y.-X.; Bernardineli, G. Angew. Chem., Int. Ed. 2007,
46, 8484. (m) Hills, I. D.; Fu, G. C. Angew. Chem., Int. Ed. 2003, 42, 3291.
(4) (a) Ishimaru, T.; Shibata, N.; Horikawa, T.; Yasuda, N.; Nakamura,
S.; Toru, T.; Shiro, M. Angew. Chem., Int. Ed. 2008, 47, 4157. (b) Shibata,
N.; Kohno, J.; Takai, K.; Nakamura, S.; Toru, T.; Kagemasa, S. Angew.
Chem., Int. Ed. 2005, 44, 4204. (c) Hamashima, Y.; Suzuki, T.; Takano, H.;
Shimura, Y.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127, 10164.
(17) (a) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew.
Chem., Int. Ed. 2010, 49, 3823.
(18) When the reaction was run under identical conditions with
NBS as the electrophile, a 48% ee was found for the brominated product.
(19) A 60% ee was observed for the Ac-protected oxindole, while no
reactivity was found with the Bn-protected oxindole. The Ts-protected
product was not separable by chiral HPLC.
(20) (a) Akiyama, T.; Katoh, T.; Mori, K. Angew. Chem., Int. Ed.
2009, 48, 4226. (b) Wu, F.; Li, H.; Hong, R.; Deng, L. Angew. Chem., Int.
Ed. 2006, 45, 947.
(21) Examples of additional Michael acceptors that were tested can
be found in the Supporting Information.
(5) (a) Liu, Y.-L.; Wang, B.-L.; Cao, J.-J.; Chen, L.; Zhang, C.; Wang,
Y.-X.; Zhou, J. J. Am. Chem. Soc. 2010, 132, 15176.(b) Itoh, T.; Ishikawa,
H.; Hayashi, Y. Org. Lett. 2009, 11, 3854. (c) Tomita, D.; Yamatsugu, K.;
Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 6946. (d) Itoh, J.;
3341
dx.doi.org/10.1021/ja109824x |J. Am. Chem. Soc. 2011, 133, 3339–3341