The Journal of Organic Chemistry
NOTE
according to TLC). EtOH (500 μL) was added, and stirring was
continued for 30 min. Volatiles were evaporated and the residue was
chromatographed [SiO2, CH2Cl2/MeOH 100:0 to 93:7 step gradient]
to furnish 8 as a white amorphous solid (162 mg, 96%). Rf 0.46
(CH2Cl2/MeOH 9:1). HRMS (ESI) calcd for C29H34BrN6O4Si
637.1594, found 637.1584.
European research programme Synthcells FP6-NEST-Pathfinder
STREP No. 043359. P.S. thanks for the ongoing support through
the COST Action CM0703 Systems Chemistry.
’ REFERENCES
30-Amino-50-O-(tert-butyldiphenylsilyl)-30-deoxyadenosine
(10). NaH (60% in mineral oil; 9 mg, 0.23 mmol) in a round-
bottomed flask was rinsed with hexane (3 ꢀ 1 mL), anhydrous THF
(3 mL) was added, and the suspension was cooled to -20 °C under N2.
A solution of 8 (122 mg, 0.18 mmol, coevaporated with 3 ꢀ 1 mL of
THF) in anhydrous THF (2 mL) was added under N2 to the NaH
suspension, and stirring was continued for 12 h at -20 °C. NaOH (228
mg, 5.7 mmol) in MeOH/H2O 1:1 (4 mL) was added and the reaction
mixture was stirred at rt overnight and monitored by TLC. The mixture
was acidified to pH 6 ∼ 6.5 with HCl. After 5min, the solution was
filtered, the volatiles were evaporated and the residue was chromato-
graphed [SiO2, CH2Cl2/MeOH 100:0 to 92:8 step gradient] to yield 10
(102 mg, 93%) as a white amorphous solid. Rf 0.25 (CH2Cl2/MeOH
9:1). HRMS (ESI) calcd for C26H33N6O3Si 505.2384, found 505.2372.
50-O-(tert-Butyldiphenylsilyl)-30-[N-(9-fluorenyl)methoxy-
carbonyl-O-methyl-L-tyrosyl]amido-30-deoxyadenosine (11).
N-Fmoc-O-Me-L-Tyr (108 mg, 0.26 mmol) and HOBt (35 mg, 0.26 mmol)
were coevaporated with anhydrous THF (3 ꢀ 1 mL) and dissolved in
anhydrous THF (2 mL) and then the solution was cooled to 0 °C under N2
for 10 min. DIC (32 μL, 0.26 mmol) was added and the reaction mixture
was stirred at the same temperature for 15 min. This solution was added
slowly to a solution of 10 (95 mg, 0.19 mmol) in anhydrous THF (1 mL)
and the reaction mixture was stirred for 4 h at rt, taken up in EtOAc
(15 mL), and then washed with sat. NaHCO3 solution (15 mL) and H2O
(15 mL). The organic layer was dried with Na2SO4 and evaporated and the
residue underwent silica gel column chromatography [SiO2, CH2Cl2/
MeOH: 100:0 to 92:8 step gradient] to yield 11 (153 mg, 90%) as a white
amorphous solid. Rf 0.44 (CH2Cl2/ MeOH 9:1). HRMS (ESI) calcd for
C51H54N7O7Si 904.3854, found 904.3855.
(1) Porter, J. N.; Hewitt, R. I.; Hesseltine, C. W.; Krupka, G.; Lowery, J.;
Wallace, W. S.; Bohonos, N.; Williams, J. H. Antibiot. Chemother. 1952,
2, 409–410.
(2) Kmetec, E.; Tirpack., A. Biochem. Pharmacol. 1970, 19, 1493–1500.
(3) (a) Ban, N.; Nissen, P.; Hansen, J.; Moore, P. B.; Steitz, T. A.
Science 2000, 289, 905–920. (b) Nissen, P.; Hansen, J.; Ban, N.; Moore,
P. B.; Steitz, T. A. Science 2000, 289, 920–930. (c) Bayfield, M. A.;
Dahlberg, A. E.; Schulmeister, U.; Dorner, S.; Barta, A. Proc. Natl. Acad.
Sci. U.S.A. 2001, 98, 10096–10101. (d) Hansen, J.; Schmeing, T. M.;
Moore, P. B.; Steitz, T. A. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 11670–11675. (e) Green, R.; Lorsch, J. R. Cell 2002, 110,
665–668. (f) Katunin, V.; Muth, G.; Strobel, S. A.; Wintermeyer, W.;
Rodnina, M. V. Mol. Cells 2002, 10, 339–346. (g) Parnell, K. M.; Seila,
A. C.; Strobel, S. A. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 11658–11663.
(h) Rodnina, M. V.; Wintermeyer, W. Curr. Opin. Struct. Biol. 2003,
13, 334–340. (i) Sievers, A.; Beringer, M.; Rodnina, M. V.; Wolfenden,
R. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 7897–7901. (j) Weinger, J. S.;
Parnell, K. M.; Dorner, S.; Green, R.; Strobel, S. A. Nat. Struct. Mol. Biol.
2004, 11, 1101–1106. (k) Youngman, E. M.; Brunelle, J. L.; Kochaniak,
A. B.; Green, R. Cell 2004, 117, 589–599. (l) Schmeing, T. M.; Huang,
K. S.; Kitchen, D. E.; Strobel, S. A.; Steitz, T. A. Mol. Cells 2005,
20, 437–448. (m) Schmeing, T. M.; Huang, K. S.; Strobel, S. A.; Steitz,
T. A. Nature 2005, 438, 520–524. (n) Trobro, S.; Åqvist, J. Proc. Natl.
Acad. Sci. U.S.A. 2005, 102, 12395–12400. (o) Huang, K. S.; Weinger,
J. S.; Butler, E. B.; Strobel, S. A. J. Am. Chem. Soc. 2006, 128, 3108–3109.
(p) Schroeder, G. K.; Wolfenden, R. Biochemistry 2007, 46, 4037–4044.
(q) Wohlgemuth, I.; Brenner, S.; Beringer, M.; Rodnina, M. V. J. Biol.
Chem. 2008, 283, 32229–32235. (r) Koch, M.; Huang, Y.; Sprinzl, M.
Angew. Chem., Int. Ed. 2008, 47, 7242–7245. (s) Lang, K.; Erlacher, M.;
Wilson, D. N.; Micura, R.; Polacek, N. Chem. Biol 2008, 15, 485–492.
(t) Kingery, D. A.; Pfund, E.; Voorhees, R. M.; Okuda, K.; Wohlgemuth,
I.; Kitchen, D. E.; Rodnina, M. V.; Strobel, S. A. Chem. Biol. 2008,
15, 493–500. (u) Voorhees, R. M.; Weixlbaumer, A.; Loakes, D.; Kelley,
A. C.; Ramakrishnan, V. Nat. Struct. Mol. Biol. 2009, 16, 528–533.
(4) Yarmolinsky, M. B.; Haba, G. L. Proc. Natl. Acad. Sci. U.S.A. 1959,
45, 1721–1729.
(5) (a) Baker, B. R.; Schaub, R. E.; Joseph, J. P.; Williams, J. H. J. Am.
Chem. Soc. 1955, 77, 12–15. (b)Suami, T.;Tadano, K.;Ayabe, M.;Emori, Y.
Bull. Chem. Soc. Jpn. 1978, 51, 855–861. (c) Okruszek, A.; Verkade, J. G. J.
Med. Chem. 1979, 22, 882–885. (d) Ozols, A. M.; Azhayev, A. V.; Dyatkina,
N. B.; Krayevsky, A. A. Synthesis 1980, 557–559. (e) Bouchu, D.;
Abou-Assali, M.; Grouiller, A.; Carret, G.; Pacheco, H. Eur. J. Med.
Chem.—Chim. Ther. 1981, 16, 43–47. (f) Lee, H.; Fong, K. L.; Vince, R.
J. Med. Chem. 1981, 24, 304–308. (g) Vince, R.; Daluge, S.; Brownwell, J.
J. Med. Chem. 1986, 29, 2400–2403. (h) McDonald, F. E.; Gleason, M. M.
J. Am. Chem. Soc. 1996, 118, 6648–6659. (i) Botta, O.; Strazewski, P.
Nucleosides Nucleotides 1999, 18, 721–724. (j) Chapuis, H.; Strazewski, P.
Tetrahedron 2006, 62, 12108–12115. (k) Takatsuki, K.; Ohgushi, S.;
Kohmoto, S.; Kishikawa, K.; Yamamoto, M. Nucleosides, Nucleotides Nucleic
Acids 2006, 25, 719–734. (l) Charafeddine, A.; Dayoub, W.; Chapuis, H.;
Strazewski, P. Chem.—Eur. J. 2007, 13, 5566–5584. (m) Okuda, K.; Hirota,
T.; Kingery, D. A.; Nagasawa, H. J. Org. Chem. 2009, 74, 2609–2612.
(6) (a) Robins, M. J.; Miles, R. W.; Samano, M. C.; Kaspar, R. L.
J. Org. Chem. 2001, 66, 8204–8210. (b) Samano, M. C.; Robins, M. J.
Tetrahedron Lett. 1989, 30, 2329–2332.
30-[O-Methyl-L-tyrosyl]amido-30-deoxyadenosine (2). Com-
pound 11 (137 mg, 0.15 mmol) was dissolved in 33% CH3NH2/EtOH
(12 mL). The reaction mixture was stirred at rt for 1 h. The solution was
concentrated under reduced pressure and coevaporated from CHCl3 (2 ꢀ
4 mL). The residue was dissolved in MeOH (5 mL) and ammonium
fluoride (30 mg, 0.81 mmol) was added to the solution. The reaction
mixture was warmed to 50-55 °C, stirred for 4 h, and monitored by TLC.
The volatiles were removed under reduced pressure. The residue was
purified by silica gel column chromatography [SiO2, EtOAc/MeOH/H2O
14:1:0.5, 12:1:0.5, 10:1:0.5, 8:1:0.5, 6:1:0.5, 4:1:0.5] to yield after evapora-
tion compound 2 (62 mg, 92%). Rf 0.10 (CH2Cl2/MeOH 9:1). HRMS
(ESI) calcd for C20H26N7O5 444.1996, found 444.1991.
’ ASSOCIATED CONTENT
Supporting Information. 1H and 13C NMR signal list-
S
b
ings of the compounds and 1H NMR, 13C NMR, DEPT, COSY,
and HSQC spectra. This material is available free of charge via
’ AUTHOR INFORMATION
Corresponding Author
*Email: strazewski@univ-lyon1.fr.
(7) Robins, M. J.; Hawrelak, S. D.; Hernꢀandez, A. E.; Wnuk, S. W.
Nucleosides Nucleotides 1992, 11, 821–834.
(8) Nguyen-Trung, N. Q.; Botta, O.; Terenzi, S.; Strazewski, P.
J. Org. Chem. 2003, 68, 2038.
(9) (a) Greenberg, S.; Moffatt, J. G. J. Am. Chem. Soc. 1973,
95, 4016–4025. (b) Russel, A. F.; Greenberg, S.; Moffat, J. G. J. Am.
Chem. Soc. 1973, 95, 4025–4030.
’ ACKNOWLEDGMENT
We acknowledge Bernard Fenet for NMR spectroscopic
analyses. K.K.S. is thankful for his graduate fellowship from the
2255
dx.doi.org/10.1021/jo102178h |J. Org. Chem. 2011, 76, 2253–2256