K. M. Clapham et al. / Bioorg. Med. Chem. Lett. 21 (2011) 966–970
969
Table 1
DNA-PK and PI3K
potent and a modestly selective inhibitor, achieving selectivity
for DNA-PK over PI3K has proven challenging. Overall, this study
a inhibitory activity of O-alkoxyphenyl chromen-4-ones
a
has further elucidated our understanding of SARs around a puta-
tive hydrophobic region of the ATP-binding site, indicating a lim-
ited steric tolerance and hydrophobic complementarily. Further
studies are currently underway to elucidate the binding mode of
this class of chromen-4-one based DNA-PK inhibitors.
O
O
N
HN
RO
O
Acknowledgements
O
O
N
The authors thank Dr. Karen Haggerty and the AstraZeneca
Oncology iMed purification group for the analytical and semi-pre-
parative HPLC. The biochemical screening expertise of Marcus Pea-
cock, Nahida Parveen, William Deacon and the AstraZeneca
Oncology iMed biochemical screening team is appreciatively
recognised. The use of the EPSRC Mass Spectrometry Service at
the University of Wales (Swansea) and financial support from Can-
cer Research UK are also gratefully acknowledged.
a
Compound
R
DNA-PK IC50
(lM)
PI3Kab IC50
(lM)
1 (LY294002)
2
—
—
1.3
0.03
0.50
0.13
11a
0.008
0.07
O
References and notes
11b
0.69
0.30
15
16
21a
21b
Me
H
Et
0.29
0.08
0.28
0.33
0.35
0.43
0.47
0.29
1. Jackson, S. P.; Bartek, J. Nature 2009, 461, 1071.
2. Smith, G. C. M.; Jackson, S. P. Genes Dev. 1999, 13, 916.
3. Kurimasa, A.; Kumano, S.; Boubnov, N. V.; Story, M. D.; Tung, C. S.; Peterson, S.
R.; Chen, D. J. Mol. Cell. Biol. 1999, 19, 3877.
i-Pr
4. Rotman, G.; Shiloh, Y. Hum. Mol. Genet. 1998, 7, 1555.
5. Price, B. D.; Youmell, M. B. Cancer Res. 1996, 56, 246.
6. Rosenzweig, K. E.; Youmell, M. B.; Palayoor, S. T.; Price, B. D. Clin. Cancer Res.
1997, 3, 1149.
21c
21d
0.18
0.17
0.15
0.15
7. Boulton, S.; Kyle, S.; Yalcintepe, L.; Durkacz, B. Carcinogenesis 1996, 17, 2285.
8. Kashishian, A.; Douangpanya, H.; Clark, D.; Schlachter, S. T.; Eary, C. T.; Schiro, J.
G.; Huang, H.; Burgess, L. E.; Kesicki, E. A.; Hallbrook, J. Mol. Cancer Ther. 2003,
2, 1257.
9. Shinohara, E. T.; Geng, L.; Tan, J.; Chen, H.; Shir, Y.; Edwards, E.; Hallbrook, J.;
Kesicki, E. A.; Kashishian, A.; Hallahan, D. E. Cancer Res. 2005, 65, 4987.
10. Walker, E. H.; Pacold, M. E.; Perisic, O.; Stephens, L.; Hawkins, P. T.; Wymann,
M. P.; Williams, R. L. Mol. Cell 2000, 6, 909.
11. Griffin, R. J.; Fontana, G.; Golding, B. T.; Guiard, S.; Hardcastle, I. R.; Leahy, J. J. J.;
Martin, N.; Richardson, C.; Rigoreau, L.; Stockley, M. L.; Smith, G. C. M. J. Med.
Chem. 2005, 48, 569.
12. Leahy, J. J. J.; Golding, B. T.; Griffin, R. J.; Hardcastle, I. R.; Richardson, C.;
Rigoreau, L.; Smith, G. C. M. Bioorg. Med. Chem. Lett. 2004, 14, 6083.
13. Hardcastle, I. R.; Cockcroft, X.; Curtin, N. J.; Desage El-Murr, M.; Leahy, J. J. J.;
Stockley, M.; Golding, B. T.; Rigoreau, L. J. M.; Richardson, C.; Smith, G. C. M.;
Griffin, R. J. J. Med. Chem. 2005, 48, 7829.
14. Hollick, J. J.; Rigoreau, L. J. M.; Cano, C.; Cockcroft, X.; Curtin, N. J.; Frigerio, M.;
Golding, B. T.; Guiard, S.; Hardcastle, I. R.; Hickson, I.; Hummersone, M. G.;
Menear, K. A.; Martin, N. M. B.; Matthews, I.; Newell, D. R.; Ord, R.; Richardson,
C. J.; Smith, G. C. M.; Griffin, R. J. J. Med. Chem. 2007, 50, 1958.
15. Barbeau, O.; Cano-Soumillac, C.; Griffin, R. J.; Hardcastle, I. R.; Smith, G. C. M.;
Richardson, C.; Clegg, W.; Harrington, R. W.; Golding, B. Org. Biomol. Chem.
2007, 5, 2670.
16. Zhao, Y.; Thomas, H. D.; Batey, M. A.; Cowell, I. G.; Richardson, C. J.; Griffin, R. J.;
Calvert, A. H.; Newell, D. R.; Smith, G. C. M.; Curtin, N. J. Cancer Res. 2006, 66,
5354.
17. Saravanan, K.; Albertella, M.; Cano, C.; Curtin, N. J.; Frigerio, M.; Golding, B. T.;
Haggerty, K.; Hardcastle, I. R.; Hummersone, M.; Menear, K.; Newell, D. R.;
Rennison, T.; Richardson, C.; Rigoreau, L.; Rodriguez-Aristegui, S.; Smith, G. C.
M.; Griffin, R. J. Proc. Am. Assoc. Cancer Res. 2008, 4156.
18. Desage El-Murr, M.; Cano, C.; Golding, B. T.; Hardcastle, I. R.; Hummersome,
M.; Frigerio, M.; Curtin, N. J.; Menear, K.; Richardson, C.; Smith, G. C. M.; Griffin,
R. J. Bioorg. Med. Chem. Lett. 2008, 18, 4885.
O
21e
3.3
1.1
H2N
21f
2.6
1.5
4.4
MeO
N
21g
>10
21h23
21i
0.16
0.5
0.29
0.4
21j
23
0.11
0.27
1.0
12
1.6
3
HO
26
H2N
a
IC50 values were determined in accordance with Ref. 13 and are the means of
three separate determinations.
IC50 values were determined in accordance with Ref. 26 and are the means of
three separate determinations.
b
substituents, we were pleased to identify a potent and relatively
selective inhibitor 11a, exhibiting IC50 values of 0.008
0.07 M for DNA-PK and PI3K , respectively. The fact that 11a is
approximately ninefold selective for DNA-PK versus PI3K and
fourfold more potent than the parent 8-dibenzothiophenyl chro-
men-4-one 2, suggests that the cyclopropylmethoxy group of 11a
might be making productive interactions with a hydrophobic
region of the ATP-binding domain of DNA-PK. It is notable that
compared to 11a, the sec-butyl analogue 21c is ca. 20-fold less
potent against DNA-PK but only ca. twofold less potent against
lM and
l
a
a
19. Cano, C.; Golding, B. T.; Haggerty, K.; Hardcastle, I. R.; Peacock, M.; Griffin, R. J.
Org. Biomol. Chem. 2010, 8, 1922.
20. DMR clonogenic assay: HeLa cells were seeded per well into a 6-well tissue
culture treated dish and incubated overnight at 37 °C/5% CO2. Following a 1 h
pre-treatment with either vehicle or compound the plates were exposed to
2 Gy ionising radiation using a Faxitron 43855D X-ray source and incubated
overnight at 37 °C/5% CO2. The media was replaced with fresh media in the
absence of compound or vehicle and incubated for a further 6–8 days. The
media was removed and the cell colonies were fixed and stained with Giemsa
and scored with an automated colony counter (Oxford Optronics Ltd, Oxford,
United Kingdom).
PI3Ka.
In summary, we have identified a novel series of O-alkoxyphe-
nyl chromen-4-ones that exhibit a range of potencies against
DNA-PK. These compounds represent the first exemplified chrome-
none-based DNA-PK inhibitors that lack an aryl substituent
directly attached at the C-2 position of the phenyl ring. With the
exception of the cyclopropylmethoxy derivative 11a, the most
The dose modification ratio (DMR) is defined as the ratio of the number of cells
that survive a single 2 Gy dose of IR to that of the number of cells that survive
the same dose in combination with a given concentration of DNA-PK inhibitor.
This value provides an indirect measure of the ability of a particular compound
to potentiate the DNA damage elicited by IR, and also indicates whether or not
the compound in question is cell permeable. IR alone at the dose used (2 Gy)