S.-P. Tang et al. / Journal of Molecular Catalysis A: Chemical 335 (2011) 222–227
227
The hydrolysis rate of the phosphate diester increased with
Appendix A. Supplementary data
increasing pH. According to the species distribution as determined
by the pH potentiometric titration and analysis of the kBNPP/pH
Supplementary data associated with this article can be found, in
profiles, the active species should be [Zn3(L2−
)
2
(H2O)(OH)]+
and [Zn3(L2−)2(OH)2], while the Zn–OH in Zn3(L2−
)
2
acted as
the nucleophile. The second-order rate constants (kBNPP) were
plotted as a sigmoid curve over pH; however, this is differ-
References
[1] W.H. Chapman, R. Breslow, J. Am. Chem. Soc. 117 (1995) 5462–
5469.
[2] (a) A.A. Neverov, C.T. Liu, S.E. Bunn, D. Edwards, C.J. White, S.A. Melnychuk, R.S.
Brown, J. Am. Chem. Soc. 130 (2008) 6639–6649;
rate constant (kNA
pH and NA hydrolysis was catalyzed by
)
increased exponentially with increasing
supramolecular
a
inclusion complex [Zn(L1)(H2O)2(-CD)] (ClO4)2·9.5H2O (L1 = 4-
(4ꢀ-tert-butyl)benzyldiethylenetriamine) [28]. Thus, only one of
the Zn–OH groups was the effective nucleophile and the other
hydroxyl group in [Zn3(L2−)2(OH)2] was not active during the
catalysis.
(b) M.F. Mohamed, A.A. Neverov, R.S. Brown, Inorg. Chem. 48 (2009)
11425–11433;
(c) W.Y. Tsang, D.R. Edwards, S.A. Melnychuk, C.T. Liu, C.M. Liu, A.A. Neverov,
N.H. Williams, R.S. Brown, J. Am. Chem. Soc. 131 (2009) 4159–4166;
(d) C.T. Liu, A.A. Neverov, R.S. Brown, J. Am. Chem. Soc. 130 (2008)
13870–13872.
[3] C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, C. Giorgi, P. Paoletti, B. Valtancoli,
D. Zanchi, Inorg. Chem. 36 (1997) 2784–2790.
These results show that the zinc complex has good hydrolytic
activities for both monoester NA and diesters BNPC and BNPP,
which may be attributed to its polynuclear structures at different
pH. At pH = 7.00, the zinc complex was found to exist in the dinu-
clear single ligand molecular structure. In the catalytic hydrolysis of
carboxylic acid esters, the substrates bind to the hydrophobic cav-
ity of -cyclodextrin, and Zn1 interacts with the oxygen atom of
ester and stabilizes the substrate, which held the functional group
of the substrate directly above Zn2. The Zn2–OH active species
can then nucleophilically attack the carbonyl. When pH > 8.5, the
zinc complexes exist in a trimetal bis-ligands structure. In BNPP
hydrolysis, one hydrophobic cavity binds with the substrate, and
Zn2 interacts with the oxygen atom of phosphonyl ester and sta-
trins at the terminals of the complex cannot bind with the substrate
cooperatively due to their large distance and unsuitable direction.
Thus the possible intermediates of the esters hydrolysis catalyzed
by zinc complexes are proposed in Scheme 2.
[4] M. Arca, A. Bencini, E. Berni, C. Caltagirona, F.A. Devillanova, F. Isaia, A. Garau,
C. Giorgi, V. Lippolis, A. Perra, L. Tei, B. Valtancoli, Inorg. Chem. 42 (2003)
6929–6939.
[5] Q.X. Xiang, J. Zhang, P.Y. Liu, C.Q. Xia, Z.Y. Zhou, R.G. Xie, X.Q. Yu, J. Inorg.
Biochem. 99 (2005) 1661–1669.
[6] J. Aguilar, A. Bencini, E. Berni, A. Bianchi, E. García-Espan˜a, L. Gil, A.
Mendoza, L. Ruiz-Ramírez, C. Soriano, Eur. J. Inorg. Chem. (2004) 4061–
4071.
[7] C. Bazzicalupi, A. Bencini, E. Berni, A. Bianchi, P. Fornasari, C. Giorgi, B. Valtancoli,
Inorg. Chem. 43 (2004) 6255–6265.
[8] (a) M. Subat, K. Woinaroschy, S. Anthofer, B. Malterer, B. König, Inorg. Chem.
46 (2007) 4336–4356;
(b) Q. Wang, E. Leino, A. Jancsó, I. Szilágyi, T. Gajda, E. Hietamäki, H. Lönnberg,
ChemBioChem. 9 (2008) 1739–1748.
[9] C. Bazzicalupi, A. Bencini, E. Berni, C. Giorgi, S. Maoggi, B. Valtancoli, Dalton
Trans. (2003) 3574–3580.
[10] N.V. Kaminskaia, C. He, S.J. Lippard, Inorg. Chem. 39 (2000) 3365–3373.
[11] L.V. Penkova, A. Maciag, E.V. Rybak-Akimova, M. Haukka, V.A. Pavlenko, T.S.
Iskenderov, H. Kozzowski, F. Meyer, I.O. Fritsky, Inorg. Chem. 48 (2009)
6960–6971.
[12] B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, J.A. Cuesta-Seijo, R. Herbst-
Irmer, H. Pritzkow, Inorg. Chem. 43 (2004) 4189–4202.
[13] B. Bauer-Siebenlist, F. Meyer, E. Farkas, D. Vidovic, S. Dechert, Chem. Eur. J. 11
(2005) 4349–4360.
[14] F. Meyer, Eur. J. Inorg. Chem. (2006) 3789–3800.
[15] P. Molenveld, J.F.J. Engbersen, D.N. Reinhoudt, Chem. Soc. Rev. 29 (2000)
75–86.
4. Conclusion
[16] R. Cacciapaglia, A. Casnati, L. Mandolini, D.N. Reinhoudt, R. Salvio, A. Sartori, R.
Ungaro, J. Org. Chem. 70 (2005) 624–630.
[17] R. Cacciapaglia, A. Casnati, L. Mandolini, D.N. Reinhoudt, R. Salvio, A. Sartori, R.
Ungaro, J. Org. Chem. 70 (2005) 5398–5402.
[18] R. Cacciapaglia, A. Casnati, L. Mandolini, D.N. Reinhoudt, R. Salvio, A. Sartori, R.
Ungaro, Inorg. Chim. Acta 360 (2007) 981–986.
[19] R. Breslow, B. Zhang, J. Am. Chem. Soc. 114 (1992) 5882–5883.
[20] B. Zhang, R. Breslow, J. Am. Chem. Soc. 119 (1997) 1676–1681.
[21] Z. Dong, X. Li, K. Liang, S. Mao, X. Huang, B. Yang, J. Xu, J. Liu, G. Luo, J. Shen, J.
Org. Chem. 72 (2007) 606–609.
[22] Y.H. Zhou, M. Zhao, Z.W. Mao, L.N. Ji, Chem. Eur. J. 14 (2008) 7193–7201.
[23] S.P. Tang, Y.H. Zhou, H.Y. Chen, Z.W. Mao, L.N. Ji, Chem. Asian J. 4 (2009)
1354–1360.
[24] R.C. Petter, J.S. Salek, C.T. Sikorski, G. Kumaravel, F.T. Lin, J. Am. Chem. Soc. 112
(1990) 3860–3868.
A trinuclear bis-cyclodextrins zinc complex based on a new
-cyclodextrin derivatized ligand was synthesized and character-
ized. The zinc complex displayed good hydrolytic activities for both
monoester and diesters, which could be attributed to the special
polynuclear structures of the zinc complex at different pH. The
cooperative interaction of two metal centers and hydrophobic cav-
ity of -cyclodextrin with substrates play an important role on ester
cleavage.
Acknowledgements
This work was supported by the National Natural Science Foun-
dation of China (20821001, 20831006, 20725103 and 30770494),
the National Basic Research Program of China (No. 2007C
B815306), the Natural Science Foundation of Guangdong Province
(9351027501000003), the Scientific Research Fund of Hunan
Provincial Education Department (09K099), and the Foundation of
Hengyang Normal University (No. 10B66).
[25] G. Gran, Acta Chem. Scand. (1950) 4559–4577.
[26] J. Chen, X. Wang, Y. Zhu, J. Lin, X. Yang, Y. Li, Y. Lu, Z. Guo, Inorg. Chem. 44 (2005)
3422–3430.
[27] A. Nomura, Y. Sugiura, Inorg. Chem. 43 (2004) 1708–1713.
[28] Y.H. Zhou, H. Fu, W.X. Zhao, M.L. Tong, C.Y. Su, H. Sun, L.N. Ji, Z.W. Mao, Chem.
Eur. J. 13 (2007) 2402–2409.
[29] T. Koike, E. Kimura, J. Am. Chem. Soc. 113 (1991) 8935–8941.