Communication
ChemComm
J. Am. Chem. Soc., 2003, 125, 11925; (c) N. Marion, R. S. Ramon and
S. P. Nolan, J. Am. Chem. Soc., 2009, 131, 448; (d) H. Kanemitsu,
K. Uehara, S. Fukuzumi and S. Ogo, J. Am. Chem. Soc., 2008,
130, 17141; (e) W. Baidossi, M. Lahav and J. Blum, J. Org. Chem.,
1997, 62, 669.
7 Reviews for allylic and homoallylic alcohols: (a) G. M. Molander,
Chem. Rev., 1992, 92, 29; (b) E. R. H. Walker, Chem. Soc. Rev., 1976,
5, 23; (c) H. C. Brown and S. Krishnamurthy, Tetrahedron, 1979,
35, 567; (d) E. Negishi, M. Pour, F. E. Cederbaum and M. Kotora,
Tetrahedron, 1998, 54, 7057; (e) A. Lumbroso, M. L. Cooke and
B. Breit, Angew. Chem., Int. Ed., 2013, 52, 1890; ( f ) L. K. Sydnes,
B. Holmelid, O. H. Kvernenes, S. Valdersnes, M. Hodne and
K. Boman, ARKIVOC, 2008, 14, 242; (g) B. Sundararaju, M. Achard
and C. Bruneau, Chem. Soc. Rev., 2012, 41, 4467.
8 We envisage that initial gold allyl intermediates D undergoes a rapid
equilibrium with the other gold allyl species D0; the latter was more
active toward protonation reaction to give observed 3-en-1-one 2m
in both E and Z isomers.
4 (a) X. Li, G. Hu, P. Luo, G. Tang, Y. Gao, P. Xu and Y. Zhao, Adv.
Synth. Catal., 2012, 354, 2427; (b) M. B. T. Thuong, A. Mann and
A. Wagner, Chem. Commun., 2012, 48, 434; (c) R. Das and
D. Chakraborty, Appl. Organomet. Chem., 2012, 26, 722; (d) Z. W. Chen,
D. N. Ye, Y. P. Qian, M. Ye and L. X. Liu, Tetrahedron, 2013, 69, 6116;
(e) A. M. Jadhav, S. A. Gawade, D. Vasu, R. B. Dateer and R. S. Liu,
Chem. – Eur. J., 2014, 20, 1813; ( f ) X. F. Wu, D. Bezier and C. Darcel,
Adv. Synth. Catal., 2009, 351, 367; (g) T. Tachinami, T. Nishimura,
R. Ushimaru, R. Noyori and H. Naka, J. Am. Chem. Soc., 2013, 135, 50;
(h) W. L. Budde and R. E. Dessy, J. Am. Chem. Soc., 1963, 85, 3964;
(i) V. Janout and S. L. Regen, J. Org. Chem., 1982, 47, 3331;
( j) P. Almendros, T. M. D. Campo, M. R. Torres and B. Alcaide,
J. Org. Chem., 2013, 78, 8956.
5 Selected examples for internal alkynes: (a) S. M. A. Sohel and
R. S. Liu, Chem. Soc. Rev., 2009, 38, 2269; (b) W. Hiscox and P. W.
Jennings, Organometallics, 1990, 9, 1997; (c) Y. Fukuda and
K. Utimoto, J. Org. Chem., 1991, 56, 3729; (d) H. K. Chang,
S. Datta, A. Das, A. Odedra and R. S. Liu, Angew. Chem., Int. Ed.,
2007, 46, 4744; (e) E. Mizushima, K. Sato, T. Hayashi and M. Tanaka,
Angew. Chem., Int. Ed., 2002, 41, 4563; ( f ) A. Mukherjee and R. S. Liu,
Org. Lett., 2011, 13, 660; (g) A. Das, H. K. Chang, C. H. Yang and
R. S. Liu, Org. Lett., 2007, 10, 4061; (h) J. M. Tang, T. A. Liu and R. S. Liu,
J. Org. Chem., 2008, 73, 8479; (i) P. Nun, R. S. Ramon, S. Gaillard and
S. P. Nolan, J. Organomet. Chem., 2011, 696, 7; ( j) C. F. Xu, M. Xu,
9 The mechanism for the transformation of 3-en-1-one 2q to indanone
species 2q0 is postulated below, involving a prior isomerization to
2-en-1-one, followed by a Nazarov-type cyclization.
Y. X. Jia and C. Y. Li, Org. Lett., 2011, 13, 1556; (k) B. Xu, W. Wang and 10 Different reaction outcome for Au and Pt, see selected examples:
G. B. Hammond, J. Fluorine Chem., 2011, 132, 804.
(a) P. Almendros, T. M. D Campo, E. Soriano, J. L. Marco-Constelles
and B. Alcaide, Chem. – Eur. J., 2009, 15, 9127; (b) M. C. D. Torre,
M. A. Sierra and M. P. Munoz, Chem. – Eur. J., 2012, 18, 4499;
(c) P. Almendros, I. Fernandez, T. M. D. Campo, T. Naranjo and
B. Alcaide, Adv. Synth. Catal., 2013, 355, 2681.
6 Reviews for the reactions of 2-en-1-ones and 3-en-1-ones: (a) W. Tang
and X. Zhang, Chem. Rev., 2003, 103, 3029; (b) R. B. Dateer, K. Pati
and R. S. Liu, Chem. Commun., 2012, 48, 7200; (c) P. W. Davies,
A. Cremonesi and N. Martin, Chem. Commun., 2011, 47, 379.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 8966--8969 | 8969