3
9
Cyclohexanol
Benzylalcohol
1
1
1
1
2
2
2
6
6
8i
8j
82 Only β
95 Only β
88 Only β
77 Only β
88 Only β
92 Only β
95 Only β
In summary, we have developed a mild and stereoselective
method for the glycosidation of phenols and alcohols under
neutral conditions by the ring opening of 1,2-anhydrosugars
which are readily available from the epoxidation of glycals. This
approach directly provides easy access to aryl glycosides with a
free hydroxyl group at the C-2 position of the sugar moiety that
can be exploited for the synthesis of carbohydrates containing a
1,2-linkage, as found in many natural glycoconjugates, such as
saponins.25
10
11 Menthol
8
2d
8k
8l
12 Cholesterol
13 Methanol
14 Isopropanol
15 Ethanol
5
9a
9b
9c
6
6
16
Allylic alcohol
2
6
9d
85 Only β
Acknowledgments Dr. K. K. Balasubramanian thanks INSA for
the award of INSA Senior Scientist and financial support.
17 Benzyl alcohol
2
5
9e
88 Only β
aReagents and conditions: 1 or 2 (1.0eq.), alcohol (1.1eq.), EtOAc (1 mL), RT; bIsolated
yield after short column chromatography; cDetermined by NMR; dReaction was facile
only when heated at reflux in toluene at 110 °C for 2 h.
References and notes
Boron,23a aluminium,23a zirconium23b and zinc23c-e are known to
bring about cis-stereoselective ring opening of α-1,2-
anhydrosugars by phenols and C-nucleophiles. Mechanistically,
intramolecular ligand transfer from the metal to the anomeric
carbocation has been proposed to account for the observed
stereochemistry. In contrast, metal phenoxides give β-aryl
glycosides via an SN2 pathway.13
1. (a) Pratt, M. R.; Bertozzi, C. R. Chem. Soc. Rev., 2005, 34, 58; (b)
Boeckler, G. A.; Gershenzon, J.; Unsicker, S. B. Phytochemistry,
2011, 72, 1497; (c) Wu, X-C.; Chen, W-F.; Qian, C-D.; Li, O.; Li
P.; Wen, Y-P. The Journal of Microbiology, 2007, 45, 499; (d)
Buskas, T.; Ingale S.; Boons, G. J. Glycobiology, 2006, 16, 113;
(e) Herzner, H.; Reipen, T.; Schultz, M.; Kunz, H. Chem. Rev.,
2000, 100, 4495. (f) Bertozzi C. R.; Kiessling, L. L. Science, 2001,
291, 2357; (g) Yang, Y.; Zhang, X.; Yu, B. Nat. Prod. Rep., 2015,
32, 1331.
The contrasting stereochemical preference exhibited by
alcohols and phenols under neutral conditions in the absence of
any catalysts, additives or promoters in our ring opening reaction
indicates that the pKa of the aglycone hydroxyl group may have a
role in directing the stereochemical course of the reaction.
Alcohols, which are weak acids compared to phenols, probably
react via an SN2 mechanism to provide β-alkyl glycosides; while
in the case of phenols, which are relatively stronger acids than
alcohols, the mechanism (Scheme 3) could proceed by an SN1
pathway via the formation of an oxocarbenium ion that would
lead to mixtures of α- and β-aryl glycosides with 1,2-trans-α-aryl
glycosides as the major product. The anomeric stabilisation in the
case of α-aryl glycosides may be a reason for the formation of α-
isomers as the major product. The trans stereoselectivity
observed in the case of benzoic acid24 is difficult to account for
with the present data. We have also observed only the formation
of β-glycosyl benzoate when 1 was treated with benzoic acid
(Scheme 3) under our conditions.
2. (a) Yamanoi, T.; Midorikawa, M.; Oda, Y. Heterocycles, 2014,
88, 201; (b) Kleeb, L.; Pang, L.; Mayer, K.; Eris, D.; Sigl, A.;
Preston, R. C.; Zihlmann, P.; Sharpe, T.; Jakob, R. P.;
Abgottspon, D.; Hutter, A. S.; Scharenberg, M.; Jiang, X.;
Navarra, G.; Rabbani, S.; Smiesko, M.; Lüdin, N.; Bezençon, J.;
Schwardt, O.; Maier, T.; Ernst, B. J. Med. Chem., 2015, 58, 2221;
(c) Hesser, A. R.; Brandsen, B. M.; Walsh, S. M.; Wang,
P.; Silverman, S. K. Chem. Commun., 2016, 52, 9259.
3. Jacobsen, M.; Malmberg, J.; Ellervik, U. Carbohydr. Res.,
2006, 341, 1266.
4. Danishefsky, S. J.; Gervay, J.; Peterson, J. M.; McDonald, F.
E.; Doseki, K.; Griffith, D. A.; Oriyama, T.; Marsden, S. P. J.
Am. Chem. Soc., 1995, 117, 1940.
5. (a) Gomez, A. M.; Lobo, F.; Uriel, C.; Lopez, J. C. Eur. J. Org.
Chem., 2013, 32, 7221; (b) Taillefumler, C.; Chapleur, Y.
Chem. Rev., 2004, 104, 263.
6. (a) Tanaka, M.; Takahashi, D.; Toshima, K. Org.
Lett., 2016, 18, 5030; (b) Tanaka, M.; Nashida, J.; Takahashi,
D.; Toshima, K. Org. Lett., 2016, 18, 2288.
7. Nakagava, A.; Tanaka, M.; Hanamura, S.; Takahashi, D.;
Toshima, K. Angew. Chem. Int. Ed. 2015, 54, 10935.
8. (a) Levy, D. E.; Tang, C. The chemistry of C-glycosides,
Pergamon press, Oxford, 1995; (b) Sugai, T.; Okazaki, H.;
Kuboki, A.; Ohta, H. Bull. Chem. Soc. Jpn., 1997, 70, 2535.
9. (a) Kubota, Y.; Haraguchi, K.; Kunikata, M.; Hayashi, M.;
Ohkawa, M.; Tanaka, H. J. Org. Chem., 2006, 71, 1099; (b)
Matsushita, Y-I.; Sugamoto, K.; Kita, Y.; Matsui, T. Tetrahedron
Lett., 1997, 38, 8709; (c) Du, Y.; Kong, F. J. Carbohydr. Chem.,
1995, 14, 341; (d) Gervay, J.; Danishefsky, S. J. J. Org. Chem.
1991, 56, 5448; (e) Seeberger, P. H.; Eckhardt, M.; Gutteridge, C.
E.; Danishefsky, S. J. J. Am. Chem. Soc., 1997, 119, 10064.
10. Liu, C. F.; Xiong, D-C.; Ye, X-S. Tetrahedron Lett., 2016, 57,
1372.
OBn
OBn
H
OBn
H
OBn
H
H
O
phenol
O
O
O
BnO
BnO
BnO
BnO
BnO
BnO
BnO
BnO
H
O
O
O
O
O
O
O
1
H
H
H
4b
-isomer
(major product)
Scheme 1. Plausible mechanism for the ring opening reaction of
1
The driving force is presumably protonation of the epoxide
with the phenolic hydrogen that leads to weakening of the
anomeric C-O epoxide bond of the anhydrosugar further assisted
by mesomeric interaction of the ring oxygen. This is supported
by the fact under identical conditions no reaction was observed in
the case of cyclohexene epoxide with either isopropanol or
phenol. Our studies reveal that the pka of the aglycone alone
cannot be the deciding factor to account for the contrasting
stereoselectivity observed in the case of alcohols, phenols and
carboxylic acids. Further investigation is needed to understand
the mechanistic aspects dictating the stereochemical course of
this ring opening reaction.
11. Li, Y.; Tang, P.; Chen, Y.; Yu, B. J. Org. Chem. 2008, 73, 4323.
12. (a) Hickinbottom, W. J. J. Chem. Soc., 1928, 3140; (b) Brigl,
P. Z. physiol. Chem. 1922, 122, 245.
13. (a) Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc., 1992,
114, 3471; (b) Chiappe, C. G.; Moro, L.; Munforte, P.
Tetrahedron, 1997, 53, 10471; (c) Santiago, C. C.; Lafuente,
L.; Bravo, R.; Díaz, G.; Ponzinibbio, A. Tetrahedron Lett.,
2017, 58, 3739.
14. Nakagava, A.; Tanaka, M.; Hanamura, S.; Takahashi, D.;
Toshima, K. Angew. Chem. Int. Ed. 2015, 54, 10935.
15. Cheshev, P.; Marra, A.; Dondoni, A. Carbohydr. Res., 2006,
341, 2714.
16. (a) Nigudkar, S. S.; Demchenko, A. V. Chem. Sci., 2015, 6,