10.1002/asia.201901442
Chemistry - An Asian Journal
FULL PAPER
Org. Lett., 2006, 8, 5987-5990; (e) M. Behrends, J. Sävmarker, P. J. R.
Sjöberg, M. Larhed, ACS Catal., 2011, 1, 1455-1459; (f) J. Liu, X. Zhou,
H. Rao, F. Xiao, C. Li, G. Deng, Chem. Eur. J., 2011, 17, 7996-7999;
(g) J.-C. Hsieh, Y.-C. Chen, A.-Y. Cheng, H.-C. Tseng, Org. Lett., 2012,
14, 1282-1285; (h) J.-C. Wan, J.-M. Huang, Y.-H. Jhan, J.-C. Hsieh,
Org. Lett., 2013, 15, 2742-2745; (i) B. Skillinghaug, C. Skçld, J.
Rydfjord, F. Svensson, M. Behrends, J. Sävmarker, P. J. R. Sjöberg, M.
Larhed, J. Org. Chem., 2014, 79, 12018-12032; (j) B. Skillinghaug, J.
Rydfjord, J. Sävmarker, M. Larhed, Org. Process Res. Dev., 2016, 20,
2005-2011; (k) K. Cheng, G. Wang, M. Meng, C. Qi, Org. Chem. Front.,
2017, 4, 398-403; (l) X. Wang, Y. Huang, Y. Xu, X. Tang, W. Wu, H.
Jiang, J. Org. Chem., 2017, 82, 2211-2218.
synthesis of diverse aminoisoquinolines with excellent
chemoselectivity and functional group tolerance. In addition, this
chemistry has also been applied to the synthesis of
isoquinolones.
Experimental Section
General Methods: Melting points are uncorrected. 1H NMR and 13C
NMR spectra were measured on a 500 MHz spectrometer using DMSO-
d6 or CDCl3 as the solvent with tetramethylsilane (TMS) as an internal
standard at room temperature. Chemical shifts are given in δ relative to
TMS, and the coupling constants J are given in hertz. High-resolution
mass spectrometry (HRMS) was recorded on an ESI-Q-TOF mass
[2]
For rhodium-catalyzed examples, see: (a) C. A. Malapit, D. R. Caldwell,
I. K. Luvaga, J. T. Reeves, I. Volchkov, N. C. Gonnella, Z. S. Han, C. A.
Busacca, A. R. Howell, C. H. Senanayake, Angew. Chem., Int. Ed.,
2017, 56, 6999-7002; (b) C. A. Malapit, J. T. Reeves, C. A. Busacca, A.
R. Howell, C. H. Senanayake, Angew. Chem., Int. Ed., 2016, 55, 326-
330; (c) T. Miura, M. Murakami, Org. Lett., 2005, 7, 3339-3341.
(a) X. Wang, M. Liu, L. Xu, Q. Wang, J. Chen, J. Ding, H. Wu, J. Org.
Chem., 2013, 78, 5273-5281; (b) S. Yu, L. Qi, K. Hu, J. Gong, T. Cheng,
Q. Wang, J. Chen, H. Wu, J. Org. Chem., 2017, 82, 3631-3638.
(a) K. Hu, L. Qi, S. Yu, T. Cheng, X. Wang, Z. Li, Y. Xia, J. Chen, H.
Wu, Green Chem., 2017, 19, 1740-1750; (b) L. Qi, K. Hu, S. Yu, J. Zhu,
T. Cheng, X. Wang, J. Chen, H. Wu, Org. Lett., 2017, 19, 218-221; (c)
Y. Zhang, Y. Shao, J. Gong, K. Hu, T. Cheng, J. Chen, Adv. Synth.
Catal., 2018, 360, 3260-3265; (d) K. Hu, Q. Zhen, J. Gong, T. Cheng, L.
Qi, Y. Shao, J. Chen, Org. Lett., 2018, 20, 3083-3087; (e) X. Yao, Y.
Shao, M. Hu, Y. Xia, T. Cheng, J. Chen, Org. Lett., 2019, 21, 7697-
7701.
spectrometer.
2-(Cyanomethyl)benzonitriles
and
methyl
2-
(cyanomethyl)benzoates were synthesized according to the literature
procedures.[12] Other commercially obtained reagents were used without
further purification. Column chromatography was performed using EM
silica gel 60 (300−400 mesh).
[3]
[4]
General procedure for the synthesis of aminoisoquinolines: 2-
(Cyanomethyl)benzonitriles 1 (0.4mmol), arylboronic acid 2 (0.8 mmol),
Ni(dppp)Cl2 (5 mol%), ZnCl2 (0.6 mmol), and 2-MeTHF (2.5 mL) were
successively added into a Schlenk reaction tube under air. The mixture
was stirred for 5 minutes at room temperature for proper mixing of the
reactants, and then heated at 80 oC with vigorous stirring for 4 hours. The
mixture was poured into ethyl acetate, which was washed with saturated
NaHCO3 (3×10 mL) and then brine (10 mL). After the aqueous layer was
extracted with ethyl acetate, the combined organic layers were dried over
anhydrous Na2SO4 and evaporated under a vacuum. The residue was
purified by flash column chromatography (hexane/ethyl acetate) to afford
3-arylisoquinolin-1-amines.
[5]
[6]
(a) M. Yousuf, S. Adhikari, Org. Lett., 2017, 19, 2214-2217; (b) H. Yu, L.
Xiao, X. Yang, L. Shao, Chem. Commun., 2017, 53, 9745-9748.
For reviews on Ni-catalyzed, see: (a) S. Ikeda, Acc. Chem. Res., 2000,
33, 511-519; (b) H. M. Pan, D. Song, Y. Li, Chem. Rev., 2015, 115,
12091-12137; (c) B. M. Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang,
A. Resmerita, N. K. Garg, V. Percec, Chem. Rev., 2011, 111, 1346-
1416; (d) N. A. Eberhardt, Hairong Guan, Chem. Rev., 2016, 116,
8373-8426; (e) V. Ritleng, M. Henrion, Michael J. Chetcuti, ACS Catal.,
2016, 6, 890-906; (f) M. Henrion, V. Ritleng, M. J. Chetcuti, ACS Catal.,
2015, 5, 1283-1302; (g) R. Jana, T. P. Pathak, M. S. Sigman, Chem.
Rev., 2011, 111, 1417-1492; (h) J. Schranck, J. Rotzler, Org. Process
Res. Dev., 2015, 19, 1936-1943.
General procedure for the synthesis of isoquinolones:Methyl 2-
(cyanomethyl)benzoates 6 (0.4 mmol), arylboronic acid 2 (0.8 mmol),
Ni(dppe)Cl2 (10 mol%), ZnCl2 (2 mmol), and 2-MeTHF (2 mL) were
successively added into a Schlenk reaction tube under air. The reaction
mixture was stirred for 5 minutes at room temperature for proper mixing
of the reactants, and then heated at 120 oC with vigorous stirring for 48
hours. The mixture was poured into ethyl acetate, which was washed
with saturated NaHCO3 (3×10 mL) and then brine (10 mL). After the
aqueous layer was extracted with ethyl acetate, the combined organic
layers were dried over anhydrous Na2SO4 and evaporated under a
vacuum. The residue was purified by flash column chromatography
(hexane/ethyl acetate) to afford 3-arylisoquinolin-1(2H)-ones.
[7]
For Ni-catalyzed reactions of alkyne, see: (a) J. Montgomery, Acc.
Chem. Res., 2000, 33, 467-473; (b) J. Huang, C. Ho, Angew. Chem.,
Int. Ed., 2019, 58, 5702-5706; (c) A. García-Domínguez, S. Müller, C.
Nevado, Angew. Chem., Int. Ed., 2017, 56, 9949-9952; (d) Z. Li, A,
García-Domínguez, C. Nevado, Angew. Chem., Int. Ed., 2016, 55,
6938-6941; (e) P. Liu, J. Montgomery, K. N. Houk, J. Am. Chem. Soc.,
2011, 133, 6956-6959; (f) X. Zhang, X. Xie, Y. Liu, Chem. Sci., 2016, 7,
5815-5820; (g) H. A. Malik, G. J. Sormunen, J. Montgomery, J. Am.
Chem. Soc., 2010, 132, 6304-6305; (h) Y. Yoshino, T. Kurahashi, S.
Matsubara, J. Am. Chem. Soc., 2009, 131, 749-757; (i) A. Herath, W. Li,
J. Montgomery, J. Am. Chem. Soc., 2008, 130, 469-471.
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (No. 21572162), and the Natural Science Foundation of
Zhejiang Province (Nos. LY20B020015 and LQ18B020006) for
financial support.
[8]
[9]
(a) V. K. Chenniappan, S. Silwal, R. J. Rahaim, ACS Catal., 2018, 8,
4539-4544; (b) J.-C. Hsieh, Y.-C. Chen, A.-Y. Cheng, H.-C. Tseng, Org.
Lett., 2012, 14, 1282-1285; (c) Y. C. Wong, K. Parthasarathy, C. H.
Cheng, Org. Lett., 2010, 12, 1736-1739; (d) X. Yang, H. Yu, Y. Xu, L.
Shao, J. Org. Chem., 2018, 83, 9682-9695; (e) S. Fang, H. Yu, X. Yang,
J. Li, L. Shao, Adv. Synth. Catal., 2019, 361, 3312-3317.
Keywords: Nickel • Aminoisoquinolines • Isoquinolones •
Arylacetonitriles • 2-MeTHF
For reviews, see: (a) R. López, C. Palomo, Angew. Chem., Int. Ed.,
2015, 54, 13170-13184; (b) D. A. Culkin, J. F. Hartwig, Acc. Chem.
Res., 2003, 36, 234-245.
[1]
For palladium-catalyzed examples, see: a) C. Zhou, R. C. Larock, J.
Am. Chem. Soc., 2004, 126, 2302-2303; (b) C. Zhou, R. C. Larock, J.
Org. Chem., 2006, 71, 3551-3558; (c) J. Lindh, P. Sjçerg, M. Larhed,
Angew. Chem., Int. Ed., 2010, 49, 7733-7737; (d) B. W. Zhao, X. Y. Lu,
[10] For selected examples of 2-MeTHF, see: (a) D. F. Aycock, Org.
Process Res. Dev., 2007, 11, 156-159; (b) V. Pace, P. Hoyos, L.
Castoldi, P. Domínguez de María, . . lc ntara ChemSusChem,
2012, 5, 1369-1379; (c) V. Antonucci, J. Coleman, J. B. Ferry, N.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.