1174
C.-S. Jiang et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1171–1175
Table 2
30730108, 40976048, 81072572), STCSM Project (09ZR1438000,
10540702900), CAS Key Project (SIMM0907KF-09), and partially
funded by grant from CAS (KSCX2-YW-R-18).
Inhibitory activity of 17 and 18
Compounds
n
IC50 (lM)
a
17a
18a
17b
18b
17c
18c
17d
18d
4
4
5
5
6
6
7
7
—
0.58
—
1.11
—
0.82
—
2.90
A. Supplementary data
Supplementary data (Experimental details and 1H and 13C NMR
spectra of compounds) associated with this article can be found, in
a
Inactive.
References and notes
1. Connell, J. M.; Davies, E. J. Endocrinol. 2005, 186, 1.
Table 3
2. Bledsoe, R. K.; Madauss, K. P.; Holt, J. A.; Apolito, C. J.; Lambert, M. H.; Pearce, K.
H.; Stanley, T. B.; Stewart, E. L.; Trump, R. P.; Willson, T. M.; Williams, S. P. J.
Biol. Chem. 2005, 280, 31283.
3. Berger, S.; Bleich, M.; Schmid, W.; Cole, T. J.; Peters, J.; Watanabe, H.; Kriz, W.;
Warth, R.; Greger, R.; Schütz, G. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 9424.
4. Fuller, P. J.; Young, M. J. Hypertension 2005, 46, 1227.
Inhibitory activity of 1n and 18 against GR, ER
a and PR
Compounds
IC50
ER
(lM)
GR
a
PR
a
1n
18a
18b
18c
18d
—
—
—
—
—
8.36
—
—
—
>10
—
—
—
3.06
3.22
5. Fardella, C. E.; Miller, W. L. Annu. Rev. Nutr. 1996, 16, 443.
6. Meyers, M. J.; Xiao, H. Expert Opin. Ther. Patents 2007, 17, 17.
7. Pitt, B.; Zannad, F.; Remme, W. J.; Cody, R.; Castaigne, A.; Perez, A.; Palensky, J.;
Wittes, J. N. Eng. J. Med. 1999, 341, 709.
8. Pitt, B.; Zannad, F.; Remme, W.; Neaton, J.; Martinez, F.; Roniker, B.; Bittman, R.;
Hurley, S.; Kleiman, J.; Gatlin, M. N. Eng. J. Med. 2003, 348, 1309.
9. Gasparo, M. A.; Whitebread, S. E.; Preiswerk, G.; Jeunemaitre, X.; Corvol, P.;
Menard, J. J. Steroid Biochem. 1989, 32, 223.
a
Inactive.
10. De Gasparo, M.; Joss, U.; Ramjoe, H.; Whitebread, S.; Haenni, H.; Schenkel, L.;
Kraehenbuehl, C.; Biollas, M.; Grob, J.; Schmidlin, J.; Wieland, P.; Wehrli, H. U. J.
Pharmacol. Exp. Ther. 1987, 240, 650.
hindrance to some extent. It is important to point out that all com-
pounds 18 lacking the chiral methyl moiety were more potent than
1, which provided a very simple but efficient way to design macro-
lide MR antagonist. In addition, the ring size of the lactone is signif-
icant for antagonistic effect against MR. For instance, the activity of
18a-18c were better than 18d, and especially the compound 18a,
bearing 11-membered lactonic ring, had the best antagonistic ef-
11. (a) Neel, D. A.; Brown, M. L.; Lander, P. A.; Grese, T. A.; Defauw, J. M.; Doti, R. A.;
Fields, T.; Kelley, S. A.; Smith, S.; Zimmerman, K. M.; Steinbery, M. I.; Jadhav, P.
K. Bioorg. Med. Chem. Lett. 2005, 15, 2553; (b) Bell, M. G.; Gernert, D. L.; Grese, T.
A.; Belvo, M. D.; Borromeo, P. S.; Kelley, S. A.; Kennedy, J. H.; Kolis, S. P.; Lander,
P. A.; Richey, R.; Scott Sharp, V.; Stephenson, G. A.; Williams, J. D.; Yu, H.;
Zimmerman, K. M.; Steinberg, M. I.; Jadhav, P. K. J. Med. Chem. 2007, 50, 6443;
(c) Arhancet, G. B.; Woodard, S. S.; Dietz, J. D.; Garland, D. J.; Wagner, G. M.;
Iyanar, K.; Collins, J. T.; Blinn, J. R.; Numann, R. E.; Hu, X.; Huang, H.-C. J. Med.
Chem. 2010, 53, 4300; (d) Arhancet, G. B.; Woodard, S. S.; Iyanar, K.; Case, B. L.;
Woerndle, R.; Dietz, J. D.; Garland, D. J.; Collins, J. T.; Payne, M. A.; Blinn, J. R.;
Pomposiello, S. I.; Hu, X.; Heron, M. I.; Huang, H.-C.; Lee, L. F. J. Med. Chem.
2010, 53, 5970; (e) Fagart, J.; Hillisch, A.; Huyet, J.; Bärfacker, L.; Fay, M.; Pleiss,
U.; Pook, E.; Schäfer, S.; Rafestin-Oblin, M.-E.; Kolkhof, P. J. Biol. Chem. 2010.
12. (a) Yamada, K.; Ojika, M.; Kigoshi, H.; Suenaga, K. Nat. Prod. Rep. 2009, 26, 27;
(b) Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021; (c) Yeung, K.-S.; Paterson, I.
Chem. Rev. 2005, 105, 4237.
13. (a) Cambie, R. C.; Lal, A. R.; Rutledge, P. S.; Woodgate, P. D. Phytochemistry 1991,
30, 287; (b) Lee, K.-H.; Hayashi, N.; Okano, M.; Hall, L. H.; Wu, R.-Y.; McPhail, A.
T. Phytochemistry 1982, 21, 1119; (c) Yao, X.-S.; Ebizuka, Y.; Noguchi, H.; Kiuchi,
F.; Iitaka, Y.; Sankawa, U.; Seto, H. Tetrahedron Lett. 1983, 24, 2407; (d)
Rudiyansyah, ; Garson, M. J. J. Nat. Prod. 2006, 69, 1218; (e) Mulholland, D. A.;
Cheplogoi, P.; Crouch, N. R. Biochem. Syst. Ecol. 2003, 31, 793.
14. (a) Aldridge, D. C.; Galt, S.; Giles, D.; Turner, W. B. J. Chem. Soc. (C) 1971, 1623;
(b) Yan, R.-Y.; Li, C.-Y.; Lin, Y.-C.; Peng, G.-T.; She, Z.-G.; Zhou, S.-N. Bioorg. Med.
Chem. Lett. 2006, 16, 4205.
15. Yao, X.-S.; Ebizuka, Y.; Noguchi, H.; Kiuchi, F.; Shibuya, M.; Iitaka, Y.; Sankawa,
U.; Seto, H. Chem. Pharm. Bull. 1991, 39, 2956.
16. Fürstner, A.; Seidel, G.; Kindler, N. Tetrahedron 1999, 55, 8215.
17. Birari, R. B.; Bhutani, K. K. Drug Discovery Today 2007, 12, 879.
18. Wang, H.-Y.; Guo, Y.-W.; Zhang, X.-D.; Li, L. CN Patent 101676281(A), 2010.
19. Solladié, G.; Rubio, A.; Carreño, M. C.; Ruano, J. L. G. Tetrahedron: Asymmetry
1990, 1, 187.
fect against MR with an IC50 value of 0.58 lM, 14.4- and 3.8-fold
increase in inhibitory effect compared with 1 and 1n, respectively.
In order to test the antagonistic activity of compounds 1n and
18 against other panel of related steroid nuclear hormone recep-
tors including glucocorticoid receptor (GR), estrogen receptor
(ERa) and progestogen receptor (PR), mammalian one-hybrid as-
say was performed according to our previous methods.34,35 The
plasmids including UAS-TK-Luc, pRL-SV40 and pGAL4-nuclear
receptor (GR, ERa or PR)-LBD were transiently co-transfected into
HEK293T cells. Relative activities were measured using Dual-Lucif-
erase Assay System kit (Promega). The results are shown in Table 3.
From the data shown below, compounds 1n and 18d exhibited
antagonistic activity against ERa, 18c and 18d exhibited antago-
nism against PR, but 18a and 18b had no effects on PR and ERa,
and none of them had effects on GR.
In summary, (R)-de-O-methyllasiodiplodin (1) was synthesized
via an efficient route with nine steps in 28.3% overall yield, and
evaluated for MR antagonist activity together with its analogs.
Some more potent MR antagonists were found, such as 18a, 18b
and 18c with IC50 values ranging from 0.58 to 1.11 lM, providing
20. Fürstner, A.; Kindler, N. Tetrahedron Lett. 1996, 37, 7005.
21. Mondal, M.; Puranik, V. G.; Argade, N. P. J. Org. Chem. 2007, 72, 2068.
22. Bindl, M.; Jean, L.; Herrmann, J.; Müller, R.; Fürstner, A. Chem. Eur. J. 2009, 15,
12310.
23. Kawai, N.; Lagrange, J. M.; Ohmi, M.; Uenishi, J. J. Org. Chem. 2006, 71, 4530.
24. Mitsunobu, O. Synthesis 1981, 1, 1.
a novel MR antagonist chemtype. Initial evaluation of antagonistic
activity against MR indicated that the acetylation at phenolic hy-
droxyl groups in analogs of 1 can increase the antagonistic effect
against MR and the ring size of the lactone was also very crucial
for its activity. The further study on SAR about this new class of
MR antagonists is ongoing.
25. Experimental section and spectral data for (R)-de-O-methyllasioplodin (1): To a
stirred solution of 2 (1.00 g, 3.26 mmol) in anhydrous dichloromethane under
nitrogen, BBr3 (25 mmol, 2.41 mL) was added at 0 °C and stirred for 15 min at the
same temperature. To the resulting mixture, then H2O (15 mL) was added and it
was evacuated for 5 min. The residue was extracted with CH2Cl2 (3 ꢁ 30 mL). The
organic layer was dried with MgSO4 and concentrated. The residue was subjected
to chromatography with petroleum ether/acetone (3:1) to give the desired
Acknowledgments
products 1 as a white solid (0.52 g, 57%). ½a D20
ꢂ
+29.2 (c 0.25, CHCl3). 1H NMR
This research work was financially supported by National S & T
Major Project (Nos. 2009ZX09301-001, 2009ZX09103-060),
National Marine 863 Programme for Druggability Evaluation
(2011-2013), Natural Science Foundation of China (Nos.
(300 MHz, CDCl3): d 1.36 (3H, d, J = 6.2 Hz), 1.40–1.99 (12H, m), 2.50 (1H, m,
benzylic H), 3.28 (1H, td, J = 3.7, 11.4 Hz benzylic H), 5.17 (1H, m, HCOCO), 6.22
(1H, d, J = 2.6 Hz,), 6.27 (1H, d, J = 2.6 Hz), 11.98 (1H, s, 2-OH). 13C NMR (100 MHz,
CDCl3): d 20.1 (CH3), 21.1 (CH2), 24.1 (CH2), 24.6 (CH2), 27.2 (CH2), 30.7 (CH2), 31.0