ORGANIC
LETTERS
2011
Vol. 13, No. 8
1920–1923
Highly Stereoselective Facile Synthesis of
2-Acetoxy-1,3(E)-alkadienes via a
Rh(I)-Catalyzed Isomerization of 2,3-
Allenyl Carboxylates
Xiaobing Zhang, Chunling Fu, and Shengming Ma*
Laboratory of Molecular Recognition and Synthesis, Department of Chemistry,
Zhejiang University, Hangzhou 310027, Zhejiang, People’s Republic of China
Received January 22, 2011
ABSTRACT
A highly stereoselective Rh(I)-catalyzed 1,3-acetoxyl rearrangement of 1,2-allen-3-yl carboxylates leading to 2-acetoxy-1,3(E)-alkadienes has been
developed. In addition to the high catalytic efficiency and the scope, the excellent E-selectivity of the double bond is remarkable.
1,3-Alkadien-2-yl carboxylates are important synthetic
building blocks in organic synthesis since they may readily
undergo the Diels-Alder reaction,1 asymmetric hydroge-
nation,2 and hydrolysis to afford the functionalized R,β-
unsaturated enones.3 In the classical synthesis of 1,3-alka-
dien-2-yl carboxylate, 1-buten-3-yne4 and 2-enones1c,3b,5
have been used as starting materials; however, Hg(II)
(25 mol %)4a or H2SO4 (40 mol %)1c is required. Recently,
transition metals such as Ag(I) (5 mol %),6 Au(I)
(1-5 mol %),6a,b,7 Cu(I) (5 mol %),8 Hg(II) (5 mol %),9
(7) (a) Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128, 8414. (b)
ꢀ
Witham, C. A.; Mauleon, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D.
ꢁ
J. Am. Chem. Soc. 2007, 129, 5838. (c) Lemiere, G.; Gandon, V.; Cariou,
K.; Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Org.
Lett. 2007, 9, 2207. (d) Yu, M.; Li, G.; Wang, S.; Zhang, L. Adv. Synth.
Catal. 2007, 349, 871. (e) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc.
2008, 130, 9244. (f) Correa, A.; Marion, N.; Fensterbank, L.; Malacria,
M.; Nolan, S. P.; Cavallo, L. Angew. Chem., Int. Ed. 2008, 47, 718. (g)
Davies, P. W.; Albrecht, S. J.-C. Chem. Commun. 2008, 238. (h) Dudnik,
€
€
(1) For examples, see: (a) Kropf, H.; Schroder, R.; Folsing, R.
Synthesis 1977, 12, 894. (b) Shea, K. J.; Wada, E. J. Am. Chem. Soc.
1982, 104, 5715. (c) Potman, R. P.; Kleef, F. J.; Scheeren, H. W. J. Org.
Chem. 1985, 50, 1955. (d) Shea, K. J.; Fruscella, W. M.; Carr, R. C.;
Burke, L. D.; Cooper, D. K. J. Am. Chem. Soc. 1987, 109, 447. (e)
Hansen, D. W.; Pappo, R.; Garland, R. B. J. Org. Chem. 1988, 53, 4244.
(f) Philippot, K.; Devanne, D.; Dixneuf, P. H. J. Chem. Soc., Chem.
Commun. 1990, 17, 1199. (g) Stoodley, R. J.; Yuen, W.-H. Chem.
ꢀ
A. S.; Schwier, T.; Gevorgyan, V. Org. Lett. 2008, 10, 1465. (i) Mauleon,
P.; Krinsky, J. L.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 4513. (j)
ꢀ
ꢀ
Perez, A. G.; Lopez, G. S.; Marco-Contelles, J.; Faza, O. N.; Soriano, E.;
Lera, A. R. J. Org. Chem. 2009, 74, 2982. (k) Yu, M.; Zhang, G.; Zhang,
L. Tetrahedron 2009, 65, 1846. (l) Dudnik, A. S.; Schwier, T.; Gevorg-
yan, V. Tetrahedron 2009, 65, 1859. (m) Dudnik, A. S.; Schwier, T.;
Gevorgyan, V. J. Orgnometallic. Chem. 2009, 694, 482. (n) Garayalde,
ꢀ
Commun. 1997, 15, 1371. (h) Areces, P.; Jimenez, J. L.; Pozo, M. C.;
ꢀ
Roman, E.; Serrano, J. A. J. Chem. Soc., Perkin Trans. 1 2001, 754. (i)
Roversi, E.; Vogel, P. Helv. Chim. Acta 2002, 85, 761. (j) Pollini, G. P.;
Bianchi, A.; Casolari, A.; Risi, C.; Zanirato, V.; Bertolasi, V. Tetrahe-
dron: Asymmetry 2004, 15, 3223.
ꢀ
D.; Gomez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. J. Am. Chem.
Soc. 2010, 132, 4720.
(2) Boaz, N. W. Tetrahedron Lett. 1998, 39, 5505.
ꢀ
ꢀ
(8) (a) Barluenga, J.; Riesgo, L.; Vicente, R.; Lopez, Z. A.; Tomas,
M. J. Am. Chem. Soc. 2007, 129, 7772. (b) Schwier, T.; Sromek, A. W.;
Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007,
129, 9868.
(3) (a) Bennett, G. J.; Lee, H.-H. J. Chem. Soc., Perkin Trans. 1 1986,
633. (b) Seltzer, S. J. Org. Chem. 1995, 60, 1189. (c) Tode, C.; Yamano,
Y.; Ito, M. J. Chem. Soc., Perkin Trans. 1 2002, 1581.
(4) (a) Werntz, J. H. J. Am. Chem. Soc. 1935, 57, 204. (b) Mitsudo, T.;
Hori, Y.; Yamakawa, Y.; Watanabe, Y. J. Org. Chem. 1987, 52, 2230.
(5) Kalita, B.; Bezbarua, M. S.; Barua, N. C. Synth. Commun. 2002,
32, 3181.
(6) (a) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (b) Zhang, L.;
Wang, S. J. Am. Chem. Soc. 2006, 128, 1442. (c) Zhao, J.; Hughes, C. O.;
Toste, F. D. J. Am. Chem. Soc. 2006, 128, 7436.
(9) Imagawa, H.; Asai, Y.; Takano, H.; Hamagaki, H.; Nishizawa,
M. Org. Lett. 2006, 8, 447.
(10) (a) Soriano, E.; Marco-Contelles, J. J. Org. Chem. 2007, 72,
1443. (b) Ji, K.-G.; Shu, X.-Z.; Chen, J.; Zhao, S.-C.; Zheng, Z.-J.; Lu,
L.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2008, 10, 3919. (c) Lu, L.; Liu,
X.-Y.; Shu, X.-Z.; Yang, K.; Ji, K.-G.; Liang, Y.-M. J. Org. Chem. 2009,
74, 474.
r
10.1021/ol200198z
Published on Web 03/10/2011
2011 American Chemical Society