Table 1 Fluorescence maxima, quantum yields, and relative rates of
1O2 cycloaddition of acene-linked polymers and small molecule acenes
3 B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed.,
2008, 47, 58–77.
4 S. Gunes, H. Neugebauer and N. S. Sariciftci, Chem. Rev., 2007,
¨
107, 1324–1338.
lmax (emission)/nm
FF
krel (1O2)
5 B. S. Gaylord, A. J. Heeger and G. C. Bazan, Proc. Natl. Acad. Sci.
U. S. A., 2002, 99, 10954–10957.
6 Y. Wang, B. Liu, A. Mikhailovsky and G. C. Bazan, Adv. Mater.,
2010, 22, 656–659.
7 H.-A. Ho, A. Najari and M. Leclerc, Acc. Chem. Res., 2008, 41,
168–178.
1
P2
4
422
422
512
512
0.60
0.58
0.64
0.44
1
0.6
21
10
P3
Second, the tetracene emission at 510 nm decreased, while
polymer backbone emission at 417 nm increased (Fig. 2). The
absorbance of the CP backbone at 365 nm did not decrease
during exposure to 1O2. The initial rate of reaction of P3 with
1O2 was of the same order of magnitude (two times smaller) as
the rate of reaction between tetracene 4 and 1O2 (Table 1).
Although P2 had a qualitatively similar response to photo-
generated 1O2, the shift in emission spectra was 5 nm, and the
rate of reaction was slower, as expected from the studies with
small molecules. The rate of reaction between P2 and 1O2 was
slow enough to allow observation of significant decomposition
of the CP backbone.32
8 J. S. Yang and T. M. Swager, J. Am. Chem. Soc., 1998, 120,
11864–11873.
9 J. S. Yang and T. M. Swager, J. Am. Chem. Soc., 1998, 120,
5321–5322.
10 E. L. Dane, S. B. King and T. M. Swager, J. Am. Chem. Soc., 2010,
132, 7758–7768.
11 C. C. You, O. R. Miranda, B. Gider, P. S. Ghosh, I. B. Kim,
B. Erdogan, S. A. Krovi, U. H. F. Bunz and V. M. Rotello,
Nat. Nanotechnol., 2007, 2, 318–323.
12 R. L. Phillips, O. R. Miranda, C. C. You, V. M. Rotello and
U. H. F. Bunz, Angew. Chem., Int. Ed., 2008, 47, 2590–2594.
13 H. Li and G. C. Bazan, Adv. Mater., 2009, 21, 964–967.
14 C. Schweitzer and R. Schmidt, Chem. Rev., 2003, 103, 1685–1757.
15 P. R. Ogilby, Chem. Soc. Rev., 2010, 39, 3181–3209.
16 E. F. Ullman, H. Kirakossian, S. Singh, Z. P. Wu, B. R. Irvin,
J. S. Pease, A. C. Switchenko, J. D. Irvine, A. Dafforn, C. N. Skold
and D. B. Wagner, Proc. Natl. Acad. Sci. U. S. A., 1994, 91,
5426–5430.
17 S. B. Petersen, J. M. Lovmand, L. Honore, C. B. Jeppesen,
L. Pridal and O. Skyggebjerg, J. Pharm. Biomed. Anal., 2010, 51,
217–224.
18 F. Wilkinson, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref.
Data, 1995, 24, 663–1021.
These observations are consistent with formation of the
tetracene-endoperoxide. Tetracene and rubrene are known to
form endoperoxides in high yield via 1O2 cycloaddition.33,34
Upon endoperoxide formation, energy transfer is no longer
competitive with fluorescence from the CP backbone. Two
negative control experiments were conducted: (i) irradiating a
solution of P3 at l > 590 nm in the absence of MB, and
(ii) allowing a solution containing MB and P3 to remain in the
dark. Both experiments showed no appreciable change in
19 D. E. J. G. J. Dolmans, D. Fukumura and R. K. Jain, Nat. Rev.
Cancer, 2003, 3, 380–387.
20 M. Berneburg, S. Grether-Beck, V. Kurten, T. Ruzicka,
¨
1
K. Briviba, H. Sies and J. Krutmann, J. Biol. Chem., 1999, 274,
15345–15349.
optical spectra. Finally, the H NMR of P3 showed changes
consistent with endoperoxide formation upon exposure to 1O2.
The tetracene resonance at 8.3 ppm disappeared while a
characteristic bridgehead resonance at 6.1 ppm appeared.
In conclusion, we have developed new acene-linked CPs that
respond to 1O2 through interruption of an energy transfer
pathway by cycloaddition of the analyte with energy accepting
linear acenes. To our knowledge, this is the first example of a
conjugated polymer designed to respond to 1O2. These
materials have a ratiometric response, which can improve
quantitative analysis through internal referencing.35,36 In addi-
tion, the fluorescence enhancement of P3 is against a dark
background, which yields a large contrast (200-fold) in the
fluorescence intensity between ‘‘off’’ and ‘‘on’’ states. These
characteristics are important for the development of fluorescent
assays with these materials. We anticipate that an amplified
21 Y. J. Liu and K. Z. Wang, Eur. J. Inorg. Chem., 2008,
5214–5219.
22 B. Song, G. Wang, M. Tan and J. Yuan, J. Am. Chem. Soc., 2006,
128, 13442–13450.
23 B. Song, G. Wang and J. L. Yuan, Chem. Commun., 2005,
3553–3555.
24 X. H. Li, G. X. Zhang, H. M. Ma, D. Q. Zhang, J. Li and
D. B. Zhu, J. Am. Chem. Soc., 2004, 126, 11543–11548.
25 N. Umezawa, K. Tanaka, Y. Urano, K. Kikuchi, T. Higuchi and
T. Nagano, Angew. Chem., Int. Ed., 1999, 38, 2899–2901.
26 K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi,
T. Higuchi and T. Nagano, J. Am. Chem. Soc., 2001, 123,
2530–2536.
27 T. J. Boyd, Y. Geerts, J. K. Lee, D. E. Fogg, G. G. Lavoie,
R. R. Schrock and M. F. Rubner, Macromolecules, 1997, 30,
3553–3559.
28 Y. Li, G. Li, X. Wang, C. Lin, Y. Zhang and Y. Ju, Chem.–Eur. J.,
2008, 14, 10331–10339.
29 K. K. Chin, C. C. Trevithick-Sutton, J. McCallum, S. Jockusch,
N. J. Turro, J. C. Scaiano, C. S. Foote and M. A. Garcia-Garibay,
J. Am. Chem. Soc., 2008, 130, 6912–6913.
1
response to O2 should be possible by optimizing the stoichio-
metry of the reactive pendant. Ongoing work is focused on
determining the specificity of the response, demonstrating this
1
effect with solid-state CPs, and developing O2-mediated assays.
30 W. Fudickar and T. Linker, Chem. Commun., 2008, 1771–1773.
31 N. J. Turro, Modern Molecular Photochemistry, University Science
Books, Sausalito, CA, 1991.
´
32 H. D. Burrows, O. Narwark, R. Peetz, E. Thorn-Csanyi,
A. P. Monkman, I. Hamblett and S. Navaratnam, Photochem.
Photobiol. Sci., 2010, 9, 942–948.
The authors acknowledge support from a DARPA Young
Faculty Award (N66001-09-1-2116), Tufts University, and the
U.S. Department of Education for a GAANN fellowship
(R.H.P.).
33 D. W. Bjarneson and N. O. Petersen, J. Photochem. Photobiol., A,
1992, 63, 327–335.
34 H. H. Wasserman, J. R. Scheffer and J. L. Cooper, J. Am. Chem.
Soc., 1972, 94, 4991–4996.
Notes and references
35 Y. F. Cao, Y. E. L. Koo, S. M. Koo and R. Kopelman,
Photochem. Photobiol., 2005, 81, 1489–1498.
1 S. W. Thomas, G. D. Joly and T. M. Swager, Chem. Rev., 2007,
107, 1339–1386.
36 M. Schaferling and A. Duerkop, Standardization and Quality
¨
Assurance in Fluorescence Measurements I, 2008, 373–414.
2 F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy,
S. A. Choulis and V. E. Choong, J. Appl. Phys., 2007, 102, 091101.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 3445–3447 3447