Table 3 Cross-coupling of arene diazonium salts with dioxaza-
borocanes
4 T. S. Jo, S. H. Kim, J. Shin and C. Bae, J. Am. Chem. Soc., 2009,
131, 1656–1657.
5 Y. L. Zhong, K. P. Loh, A. Midya and Z.-K. Chen, Chem. Mater.,
2008, 20, 3137–3144.
6 Q. Yang, H. Jin, Y. Xu, P. Wang, X. Liang, Z. Shen, X. Chen,
D. Zou, X. Fan and Q. Zhou, Macromolecules, 2009, 42, 1037–1046.
7 R. Martin and S. L. Buchwald, Acc. Chem. Res., 2008, 41, 1461–1473.
8 N. Marion and S. Nolan, Acc. Chem. Res., 2008, 41, 1440–1449.
´
9 M. Blug, C. Guibert, X. Le Goff, N. Mezailles and P. Le Floch,
Chem. Commun., 2009, 201–203.
10 S. Sengupta and S. Bhattacharyya, J. Org. Chem., 1997, 62,
3405–3406.
11 S. Darses, G. Michaud and J.-P. Genet, Tetrahedron Lett., 1998,
39, 5045–5048.
Entry R1
R2
Reaction time/min Isolated yield
12 Bottoni, M. Lombardo, A. Neri and C. Trombini, J. Org. Chem.,
2003, 68, 3397–3405.
13 A. Braga, G. Ujaque and F. Maseras, Organometallics, 2006, 25,
3647–3658.
14 S. Darses and J. P. Genet, Chem. Rev., 2008, 108, 288–325.
15 G. A. Molander and B. Canturk, Angew. Chem., Int. Ed., 2009, 48,
9240–9261.
16 K. L. Billingsley and S. L. Buchwald, Angew. Chem., Int. Ed., 2008,
47, 4695–4698.
17 A. N. Cammidge, V. H. M. Goddard, H. Gopee, N. L. Harrison,
D. L. Hughes, C. J. Schubert, B. M. Sutton, G. L. Watts and
A. J. Whitehead, Org. Lett., 2006, 8, 4071–4074.
18 G. Lu, R. Franzen, Q. Zhang and Y. Xu, Tetrahedron Lett., 2005,
46, 4255–4259.
19 Y. Yamamoto, M. Takizawa, X.-Q. Yu and N. Miyaura, Angew.
Chem., Int. Ed., 2008, 47, 928–931.
20 E. P. Gillis and M. D. Burke, J. Am. Chem. Soc., 2007, 129,
6716–6717.
1
4-NO2
H
10
5
88
83
92
96
15
10
49
20
86
80
72
78
88
82
90
77
80
80
43
58
2
3
4
5
4-NO2
4-NO2
4-NO2
4-NO2
4-OMe
4-OMe
4-CHO
3-CHO
4-CN
H
10
30
30
30
30
30
30
15
30
30
30
30
30
6
7
4-OMe 4-OH
8
9
2-Ac
4-Br
4-Br
4-Br
4-Br
4-I
4-CHO
H
4-OMe
4-CHO
3-CHO
H
4-OMe
H
2-F-3-OMe 30
4-OMe
3-CHO
4-OMe
4-OMe
10
11
12
13
14
15
16
17
18
19
20
4-I
3-Br
3-Br
3-Br
3-Br
2-Br
2-CF3
30
30
20
20
21 M. Tobisu and N. Chatani, Angew. Chem., Int. Ed., 2009, 48,
3565–3568.
22 S. Darses, T. Jeffery, J.-P. Genet, J.-L. Brayer and J.-P. Demoute,
Tetrahedron Lett., 1996, 37, 3857–3860.
23 D. M. Willis and R. M. Strongin, Tetrahedron Lett., 2000, 41,
6271–6274.
readily afforded the unsymmetrical dioxygenated biphenyl
(entries 6 & 7). A biscarbonylated biphenyl was prepared
using this methodology, but only in poor yields (entry 8). As
expected, complete chemoselectivity is achieved when para-,
meta- and ortho-halogenated diazonium salts are involved,
potentially opening the possibility to undertake further
functionalisation via the halogen (entries 9–19).41 Noticeably
the presence of a fluorine ortho to the boron moiety does not
inhibit the coupling as exemplified by the preparation of the
polyhalogenated biphenyl in good yield (entry 16). Finally,
bulky ortho-trifluoromethylated diazonium was also success-
fully employed as a substrate (entry 20). It should be noted,
however, that ortho substitution tends to lower the reaction
efficiency (entries 19–20). In summary, this work represents
the first example of base-free cross-coupling of boronic
esters with diazonium salts. We have established that simple
dioxazaborocanes are useful and commonly high yielding
substrates for SMR chemistry. Moreover, they are easy to
prepare and handle and only require the use of a single
equivalent for the cross-coupling reaction. These features are
of high interest for preparative purposes and should be
attractive to both the academic and industrial communities.
Minakem (PhD grant for H.B.), the CNRS and the
University Paul Sabatier are acknowledged for their support.
24 H. Hopfl, J. Organomet. Chem., 1999, 581, 129–149.
¨
25 According to a reaction search on CAS, yields claimed for boronic
acids using a similar process vary from 20% to quantitative,
testifying the reproducibility issue.
26 S. S. Moleele, J. P. Michael and C. B. De Koning, Tetrahedron,
2006, 62, 2831–2844.
27 Y. Iwai, K. M. Gligorich and M. S. Sigman, Angew. Chem., Int.
Ed., 2008, 47, 3219–3222.
28 T. Fukuda, E.-i. Sudo, K. Shimokawa and M. Iwao, Tetrahedron,
2008, 64, 328–338.
29 J.-P. Chao, W.-Q. Wu, X.-D. Luo and Y.-Z. Ling, Youji Huaxue,
2006, 26, 1004–1007.
30 D. Cousin, J. Mann, M. Nieuwenhuyzen and H. Van den Berg,
Org. Biomol. Chem., 2006, 4, 54–62.
31 L. Vandromme, H.-U. ReiBig, S. Groper and J. P. Rabe, Eur. J.
Org. Chem., 2008, 2049–2055.
32 A. Littke, M. Soumeillant, R. F. Kaltenbach, III, R. J. Cherney,
C. M. Tarby and S. Kiau, Org. Lett., 2007, 9, 1711–1714.
33 M. Nishimura, M. Ueda and N. Miyaura, Tetrahedron, 2002, 58,
5779–5787.
34 A similar exemple has been reported very recently: D. Fandrick,
J. Reeves, Z. Tan, H. Lee and J. Song, Org. Lett., 2009, 11,
5458–5461.
35 I. A. I. Mkhalid, D. N. Coventry, D. Albesa-Jove, A. S. Batsanov,
J. A. K. Howard, R. N. Perutz and T. B. Marder, Angew. Chem.,
Int. Ed., 2006, 45, 489–491.
36 J. M. Murphy, J. D. Lawrence, K. Kawamura, C. Incarvito and
J. F. Hartwig, J. Am. Chem. Soc., 2006, 128, 13684–13685.
37 J. Takagi, K. Takahashi, T. Ishiyama and N. Miyaura, J. Am.
Chem. Soc., 2002, 124, 8001–8006.
38 According to a Cambridge Database search, the average B–N
distance within this class of compound is 1.66 A.
39 W. Spendley, G. R. Hext and F. R. Himsworth, Technometrics,
1962, 4, 441–461.
Notes and references
1 A. Suzuki, Chem. Commun., 2005, 4759–4763.
2 S. Ishikawa and K. Manabe, Chem. Commun., 2006, 2589–2591.
3 A. Collier and G. Wagner, Chem. Commun., 2008, 178–180.
40 M. Beller, H. Fischer, W. Herrmann, K. Ofele and C. Brossmer,
Angew. Chem., Int. Ed. Engl., 1995, 34, 1848–1849.
41 R. H. Taylor and F. X. Felpin, Org. Lett., 2007, 9, 2911–2914.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 2677–2679 | 2679